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Abstract

Time series are critical for decision-making in fields like finance and health-
care. Their importance has driven a recent influx of works passing time
series into language models, leading to non-trivial forecasting on some
datasets. But it remains unknown whether non-trivial forecasting implies
that language models can reason about time series. To address this gap,
we generate a first-of-its-kind evaluation framework for time series rea-
soning, including formal tasks and a corresponding dataset of multi-scale
time series paired with text captions across ten domains. Using these
data, we probe whether language models achieve three forms of reason-
ing: (1) Etiological Reasoning—given an input time series, can the language
model identify the scenario that most likely created it? (2) Question An-
swering—can a language model answer factual questions about time se-
ries? (3) Context-Aided Forecasting—does highly relevant textual context
improve a language model’s time series forecasts? We find that otherwise
highly-capable language models demonstrate surprisingly limited time
series reasoning: they score marginally above random on etiological and
question answering tasks (up to 30 percentage points worse than humans)
and show modest success in using context to improve forecasting. These
weakness showcase that time series reasoning is an impactful, yet deeply
underdeveloped direction for language model research. We also make our
datasets and code public at to support further research in this direction at
https://github.com/behavioral-data/TSandLanguage.

1 Introduction

Time series measure how systems change over time and contain information that is
uncommon in language. They are a critical data modality in healthcare (Morid et al.,
2023), finance (Sezer et al., 2020), agriculture (Kamilaris & Prenafeta-Boldú, 2018), eco-
nomics (Nerlove et al., 2014), political science (Beck & Katz, 2011), astronomy (Benson et al.,
2020), signal processing (Jagannath et al., 2021), and beyond. As the scientific community
races to bring language models (LMs) to these domains, we must ensure LMs can support
decisions about these sources of valuable information. If successful, LMs could perform
novel tasks like citing patterns and events in time series as evidence for observations and
inferences, drawing interpretable conclusions from complex dynamical systems, or learning
to recognize and respond to temporal patterns.

Several recent works have shown that LMs can be used for zero-shot time series tasks,
though nearly all focus on forecasting. These works typically forecast by structuring
historical observations as raw text (Liu et al., 2023b; Xue & Salim, 2023; Zhang et al., 2024;
Gruver et al., 2023) or images (Li et al., 2023). This is promising work, and suggests language
models may someday demonstrate the same remarkable zero-shot performance that they
do with text and images. But it remains unknown whether non-trivial forecasting implies
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a) Etiological Reasoning (Section 4)

c) Context-Aided Forecasting (Section 6)

Question: What scenario could 
have produced this time series?

Daily step counts after 
a New Year’s resolution

Minutes of sunlight per 
hour over two days

✅

❌

or

b) Question Answering (Section 5)

Context: A drug  
company tracks 
symptoms in a drug 
trial. After 60 weeks, a 
mutation makes 
symptoms dramatically 
increase. ���������� ������	���
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Question: Does the overall brightness trend 
stay the same?
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Yes, the trend 
continues upward or
✅

No, the trend is 
interrupted

❌

Figure 1: The three forms of time series reasoning (Section 2).

that LMs can reason about time series, as opposed to simply generating matching temporal
patterns that appear in their inputs. In fact, recent works indicate that a LM’s ability to
generate data does not imply deeper reasoning (West et al., 2024; Hessel et al., 2023).

In this work, we develop, apply, and release a framework to ultimately
find that despite excitement about using LMs for time series analysis,
current language models are remarkably bad at zero-shot time series reasoning. We
propose three components of time series reasoning. First, for a LM to reason about time
series it must be able to consider the etiology (the set of possible causes) of a time series
through etiological reasoning (Figure 1(a)). For example, given a time series of slowly
rising freezer temperatures, a good model would hypothesize that this rise could have been
caused by a power failure or an open freezer door. Second, a successful model should excel
at question answering and be able to address queries about time series and how they relate
to one another (Figure 1(b)). For example, given the time series of COVID transmission
rates in two cities, a model should be able to identify which series most likely represents a
lower overall mortality. Finally, time series reasoning implies context-aided forecasting,
wherein a language model can leverage its world model and natural language context to
aid in forecasting (Figure 1(c)). For example, if a language model is told that a negative
news story will come out about a company, it should integrate this information into its
prediction, potentially forecasting that its stock price will trend downward.

To evaluate LMs we create a first-of-its kind dataset that contains 230k time series multiple
choice questions and 8.7k pairs of synthetic time series and text captions that describe the
series and the context in which it was observed (Section 3). These data span a diverse set of
time series scenarios across including health data, transport and traffic trends, finance, and
more.

We use this dataset to evaluate etiological reasoning by tasking models to select the most
probable time series caption given the observed time series (Section 4) and find that human
annotators outperform language models by a margin of up to thirty percentage points, with
otherwise strong language models like GPT-4 barely doing better than random chance.
Then, we test models on a question answering task by augmenting our dataset to include
230k question-answer pairs (Section 5). Again, we find that human annotators significantly
outperform language models, indicating that language models have limited capacity to
interpret the information in time series. Finally, we evaluate language models on a context-
aided forecasting task (Section 6). We find that even with text descriptions of what will
happen in future, GPT-4 struggles to incorporate this information, resulting in negligible
improvements over models without additional context. Taken as a whole these results
indicate that despite modest time series forecasting ability, current language models fail to
reason about these ubiquitous, critical data despite considerable human performance on the
same tasks.
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2 Forms of Time Series Reasoning

Here we propose a rigorous (though non-exhaustive) definition of time series reasoning.

Consider a univariate uniformly-sampled time series of n observations, x = {x0 · · · xn},
x ∈ Rn. Suppose that an autoregressive language model M is able to represent this time
series as input and produce time series observations and text as outputs.1 That is, M
estimates the probability p of an output token sequence Y given some context tokens C and
the time series: pM(Y|x, C) = M(Y, x, C).
Definition 2.1 (Etiological Reasoning). Etiological reasoning is the property by which
language models are able to hypothesize about the cause of a time series. That is, given a time
series x, textual instructions as context C, a correct description D+ of how x was generated
and an incorrect description D−, a language model should assign higher probability to D+:

pM(D+|x, C) > pM(D−|x, C) (1)

Language models that can reason about time series should also be able to answer questions
about the behavior and implications of a time series.
Definition 2.2 (Question Answering). We define question answering as a model’s ability to
use information in the time series x to interpret queries about the time series or the events
surrounding the scenario it represents.

For the sake of evaluation, the questions should be time-series dependent—correct answers
should be unattainable without interpreting x. For example, given an ECG, a dependent
question might be, “Does this signal demonstrate atrial fibrillation?” while a trivially non-
dependent question would be, “Who was the first president of the United States?” Formally,
given a question Q and an answer A+, the model should predict

p(A+|x, Q) ≫ p(A+|Q) (2)

A language model should be able to exploit this information. In a multiple-choice setting,
given a correct answer A+ and an incorrect answer A−:

pM(A+|x, Q) > pM(A−|x, Q) (3)

Finally, for an LM to reason about time series it should be able to integrate relevant informa-
tion from text into forecasts about how the time series will behave in the future.
Definition 2.3 (Context-Aided Forecasting). Context-aided forecasting is the property by
which a language model can use additional outside information about a time series to guide
its forecasts. Given the first t observations of a time series and a relevant text description D,
the model should predict:

pM(xt+1 · · · xn|x0 · · · xt, D) > pM(xt+1 · · · xn|x0 · · · xt) (4)

Note that D must provide some meaningful information about the behavior of x.

3 Dataset

Evaluating these forms of time series reasoning requires pairs of time series and highly-
relevant text descriptions. Without a strong relationship between the two, it is impossible
to determine if a model’s failure to reason about time series is due to poor fundamental
capabilities or a poorly-designed evaluation. However, there is no general corpus of time
series and natural language descriptions that captures such relationships (Section 7.1). To
address this challenge, here we contribute a first-of-its-kind dataset of synthetic multi-
domain time series and highly relevant text captions. We prompt GPT-4 to generate
descriptions of environments that change over time alongside executable Python functions
that generate corresponding time series. A naive solution is to generate a time series as

1For models evaluated in our experiments (excluding GPT-4-Vision, and the LLaVA and Whisper
variants in Section B.1) a language model represents a time series by casting its values into strings.
Our definitions are intentionally agnostic to the model’s input representation.
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Describe an event that would create a time series, give characteristics of that series and then write code that would generate it.

The time series represents the daily count of steps from users of 
a smartphone fitness app over the span of a year. The sample 
rate is once daily at midnight. Users' motivation to exercise 
varies by season and can be influenced by external events like 
New Year resolutions, causing a spike in activity in early 
January.

A. Caption
def generate_series():    
   # Generally, a person averages around 5000 steps per day.
   steps = np.random.normal(loc=5000, scale=500, size=365)   
   # New Year effect: increase step count in first month
   steps[:31] += 1500 
   # Gradual decrease in enthusiasm   
   for i in range(1, 12):        
      steps[i*30:(i+1)*30] -= i*50   
   # Make sure we don't have negative number of steps    
   steps = np.where(steps<0, 0, steps)    
   return steps

D. Generating Function

Prompt (abbreviated for clarity):

Generated Scenario:

1. A mean of 5000 steps
2. A high in January

3. Mean reversion begins in February
4. Non-zero values

C. Characteristics

Units: Steps
Frequency: Daily

Start: 2021-01-01
End: 2021-12-31

B. Metadata

Short Caption:
“Fitness app daily steps"
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E. Complete Series

Figure 2: We generate realistic time series and text pairs by querying GPT-4 for code that
can be executed to generate the signal (Section 3).

text, however autoregressive language models struggle to generate text with long range
interactions (Bubeck et al., 2023) and demonstrate poor numerical reasoning (Akhtar et al.,
2023; Dziri et al., 2023). Accordingly, time series that are generated as text exhibit poor
coherence and are of overall low quality (Figure A.1). Instead, we leverage recent language
models’ capacity to generate code(Zhong & Wang, 2023; Chen et al., 2021; Wang et al.,
2023b). We therefore prompt GPT-4 to produce data generating functions in the form of
Python scripts. We ask the model to “imagine a scenario” that would produce a time series.
We then yield the following data for each scenario:

• A caption of the scenario that generated the time series.
• Five characteristics of a time series which matches this description.
• A generative function which, when executed, returns the time series as an array.
• Metadata about the time series, including its start and end timestamp, its sample

rate, units, a short caption of less than five words which summarizes the scenario.

To encourage diversity during generation, we append the latest twenty short descriptions
to each new prompt and ask the model to a generate a scenario that is as distinct as possible
from these previous generations. Empirically, this step is important for maintaining variety
in the generated results. The full prompt is available in Section C. Finally, we filter the
scenarios by removing multivariate time series and those with complex, missing, or infinite
values, resulting in 8.7k scenarios. Next, we feed 100 captions into GPT-4 and ask the model
to categorize these time series into ten domains (Figure A.10). We then automatically apply
these categories to the remaining 8.7k scenarios (Figure A.2). We manually reviewed 50
scenarios and found no substantial inaccuracies between the captions and the time series.

To quantify the quality of these data, we evaluate human subjects’ time series reasoning
abilities. As discussed in Sections 4 and 5, human subjects achieve far above random
performance and substantially outperform existing language models. This implies that
there is enough information in the time series and prompts to facilitate significantly higher
performance than LMs currently exhibit.

We include ten randomly selected scenarios (one from each category) in Figure A.2.

4 Etiological Reasoning: Near Random Performance

By defining time series reasoning (Section 2) and creating our first-of-its kind dataset of
time series and associated captions (Section 3) we can evaluate the capacity of LMs to
reason about these ubiquitous data. Reasoning implies an ability to provide explanations
for observed phenomena. In our context if a model can reason about a time series then it
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Model/Task Etiological Reasoning Question Answering

One TS Two TS Perturbed

Random baseline 25% 25% 25% 25%
Human 66.1% - 67.0% 61.7%

LLAMA-7B- No TS N/A† 78.4% 24.7% 25.6%
LLAMA-7B 27.3% 78.8% 25.2% 24.3%
LLAMA-13B- No TS N/A† 82.6% 26.3% 25.6%
LLAMA-13B 27.8% 82.5% 25.8% 25.6%
GPT-3.5- No TS N/A† 90.4%** 29.8%** 26.3%
GPT-3.5 33.5%** 88.2%** 27.4%** 27.7%
GPT-4- No TS N/A† 92.6%* 51.3%* 28.4%
GPT-4 33.5%* 92.3%* 52.7%* 28.4%
GPT-4-Vision 33.5%* 91.8%* 53.6%* 30.5%

Gap - Human vs Best LM 32.6% - 13.4% 33.3%
*GPT-4 generated all data and its performance should be interpreted with caution (Section 3).
**Since GPT-3.5 may share training data with GPT-4, these concerns may transfer to GPT-3.5.
†These results are not included for etiological reasoning because in this task models
only have the time series (and no metadata) as input.

Table 1: Accuracy of LMs on Etiological Reasoning and Question Answering. The human
performance was evaluated on randomly selected subset of data across both these tasks
(N=500). No TS indicates that the model was evaluated without the time series as input
(i.e. with only metadata in the prompt). Etiological Reasoning: LM performance is near-
random for LLAMA models and slightly better for GPT-3.5 models. Human performances
is significantly higher. Question Answering: LM performance on single time series questions
is high even when the time series is not given to the model and so we caution against
interpreting these results as successful time series reasoning. When evaluating a related
setting with two time series, LM performance drops to near-random for LLAMA models,
and is slightly better for GPT models, though again clearly trailing human performance
(Section 5).

should be able to hypothesize about how that series was generated. For example, given a
time series with a strong daily seasonality “sunlight intensity” is a more likely description
than “Nvidia stock price since 1999.”

We evaluate entailment by tasking an LLM to select the correct time series caption from a
set of four, with three incorrect captions (Figure 1(a)). We sampled incorrect descriptions
by randomly selecting three captions from the remainder of the dataset. To encourage the
models to focus on the time series itself and not on metadata like the series’ units or start and
end timestamps we only provided the values of the time series. Time series were encoded
into text using the method from Gruver et al. (2023). Details on this method are available in
Section A.1. For GPT-4-Vision we plotted the time series using the same method as Li et al.
(2023).

To confirm the quality of our ground truth labels and contextualize model performance
we performed a human evaluation. Ten annotators with significant expertise in data
science and time series modeling labeled an average of 50 examples each for a total of 500.
Since the models were not provided with time series metadata annotators were shown a
linegraph with the x and y axes labels removed for consistency (Figure A.9). We note that
skilled humans often struggle to interpret even simple time series plots (Albers et al., 2014),
and so human performance on this task may not represent the upper bound of possible
performance.

Our results show that all models perform remarkably poorly relative to the human baseline
(66.1% accuracy), with some models performing at or near random chance (e.g LLAMA
with 27.3% accuracy) (Table 1). GPT-4-Vision performs best (34.7%) while still falling short
of human performance by over 30 percentage points.
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A natural question is whether text is the correct way to represent a time series. To answer
this, we also experimented with training existing multimodal models on our data and found
similarly poor performance (Section B.1).

Taken as a whole, these results indicate that current zero-shot language models are poor
judges of time series etiology.

5 Question Answering: Trailing Behind Human-Level Proficiency

A LM that can reason about time series should be able to answer questions about a time
series and the implications of the scenario it describes. To properly evaluate this property
it should not be possible to answer the questions without the time series. This avoids
misleading performance estimates observed in Visual Question Answering with models
performing well even without the associated image (Wang et al., 2023c). A good candidate
for these questions are counterfactual “what-if”-style queries that ask the LM to interpret
how the time series might be different if its related scenario were changed. For example,
given a time series of coffee shop sales over the course of a day with a peak at 2pm, a good
“what-if” question might be, “If half as many customers visited the shop at noon, would the
peak sales change?”

We evaluate this ability by solving Multiple Choice Questions (MCQs) with four options –
one correct and three incorrect.

We first introduce an intuitive process for synthetically generating time series MCQs, and
demonstrate that these questions do not appropriately evaluate time series reasoning,
since LM performance is high even without the time series as input, in violation of our
aforementioned requirement. We then improve over this first procedure by synthesizing
questions about the difference between two time series, which empirically makes it harder
for LMs to guess the right answer without attending to the time series as well.

Similar to Section 4, unless otherwise noted all text-based methods used the time series
formatting approach from Gruver et al. (2023) (details in Section A.1). In Section B.3
we experiment with other input representations and show no meaningful difference in
performance. Human performance was again assessed using a team of ten data scientists
who annotated 500 time series plots using the same data (metadata, time series [as a plot],
and the short description) as the LMs.

5.1 Questions About One Time Series

‘What-if’ MCQs created for single time series were trivial to answer. An intuitive approach
to generate MCQs for time series is to prompt a LM to use the time series and associated
scenarios and metadata from Section 3 to generate questions and answers. We again
use GPT-4, as questions generated by other LMs were always answerable without the
timeseries (Section B.2). First, we prompt GPT-4 with the with all the information generated
in Section 3, i.e., time series, short caption, characteristics, generative function, and metadata,
to generate a potential counterfactual ’what-if’ scenario. Second, we prompt GPT-4 to
generate questions around the original time-series and the possible changes due to ’what-if’
scenarios and obtain 100k single time series MCQs (full prompt in Section D.1, and examples
in Section B.4).

In early experiments, we found that giving the LM access to the full caption consistently
led to questions that were entirely dependent on the caption and did not reference the time
series. Even after removing the caption from the question generating procedure, all LMs
achieved 78-92% accuracy without using the time series, demonstrating that these questions
did not necessitate time series reasoning (Table 1).

We further experimented with changing the order of options within MCQs, used prompts
with different sets of time-series features, generative functions, metadata, and presented
time series as plain text and as tokens using the procedure in LLM-TIME (Gruver et al.,
2023). However, none of these attempts produced MCQs that required the time series.

6
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We make the following observations: (1) Performance overall was high, ranging from 78-92%
without the time series. This creates a false impression of LM time series reasoning ability,
when really the performance stems from parametric LM knowledge. (2) Since these data
and questions were generated by GPT-4, with GPT-3.5 potentially sharing training data
and other components, it is less surprising that they are significantly better than LLAMA
models. We therefore caution to interpret these results as a sign of generalizable time series
reasoning ability, which is further called into question by the experiments described next.

Since LMs performed well even in the absence of time series, we deemed this setting
unsuitable for evaluating time series reasoning, and did not perform additional human
evaluation.

5.2 Questions About Two Time Series

MCQs created using two time series led to near-random performance for all LMs (except
the one generating the MCQs). To create time series MCQs that cannot be answered by
LMs without attending to the time series itself, we consider another setting in which we
first create ’what-if’ scenarios for a time-series alongside a second time series that materializes
this counterfactual scenario. We create these MCQs using a three-step procedure.

• For each time series x (Section 3) and a ’what-if’ scenario as described in the previous
paragraph, we query GPT-4 to produce the corresponding generative function that
simulates a second time series, x, that reflects the ’what-if’ scenario.

• We use the ’what-if’ scenario, short captions, both time series x and x, and their
generating functions to generate MCQs about similarities and differences between
x and x.

• To ensure that all MCQs are answerable only in the presence of both time series,
we filtered out questions that GPT-3.5 could answer in the absence of any time
series, which led to almost half of the MCQs being discarded. In total, this process
generated over 130k MCQs, with one correct and three incorrect answers each. An
example of these questions is in Figure 1.

We make the following observations: (1) Relative to the single time series MCQs described in
the previous section, all LMs, other than GPT-4, decreased to close to random performance
(Table 1). (2) Only GPT-4 achieves non-trivial performance on this MCQ task. However,
performance does not meaningfully increase when the time series is added to the LM
input. Again, the fact that GPT-4, with and without time series, achieves non-trivial
performance may be because GPT-4 was used to generate these scenarios. We describe
below an additional experiment that is consistent with this interpretation. (3) Human
performance, when given the exact same information as the LMs is significantly higher than
all LMs at 67% which perform at near-random performance (other than the aforementioned
GPT-4 and GPT-3.5 exceptions). This gap demonstrates that higher performance should be
possible for LMs.

One potential reason for LMs performing just as badly even with a time series representation
is that these time series may not contain any relevant information. However, since human
performance is substantial at 67% we can rule out this possibility. The only model achieving
meaningful levels of performance in the MCQ task with multiple time series is GPT-4, and
we have to caution again that GPT-4 was used to generate these MCQs and this evaluation
is likely to overestimate generalization performance of GPT-4.

5.3 Manually-Perturbed MCQs

Minor manual perturbations in MCQs eradicate above-random zero-shot performance
for any LM, including GPT-4 which generated all data. Upon first inspection it is notable
that GPT-4 achieved non-trivial levels of performance in question answering. However,
we show that this performance is possibly explained by GPT-4 being the model used to
synthetically generate these data and MCQ tasks, casting significant doubt on any actual
time series reasoning ability of GPT-4, and therefore all of the LMs evaluated in this study.
We demonstrate this by taking 144 samples from the previously described “two time series”
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MCQ dataset and make manual perturbations to the answers. Concretely, for each question
we select the correct answer for the MCQ and create a similar incorrect answer as a distractor
by editing the numerical values so that they are similar while still incorrect. We provide an
example in Section B.5.

In addition, we create a small set of 52 manually generated MCQs on non-synthetic real-
world time series as a second dataset to evaluate the generalizability of any non-trivial
performance observed thus far. Specifically, we selected time-series examples from yearly
unemployment rates in the USA, annual imports in the USA from China, and COVID-19
cases in Massachusetts, among others, and wrote associated MCQs (Section B.6).

We make the following observations: (1) Prior to the manual perturbations, GPT-4 and
GPT-4- No TS answered over half the MCQs correctly. However, after only minor changes
to MCQ options performance decreases to near-random performance as well (Table 1).
This strongly suggests that GPT-4’s above-random performance in all prior time series
MCQ tasks is due to the fact that it created the data and MCQs itself, and that does not
generalize to slightly varied settings. We hypothesize (i.e., do not claim or prove) that the
prior non-trivial performance is explained by the model recognizing likely correct answers
due to artifacts of the distribution that this LM models. (2) In the manually created real-
world dataset, GPT-4’s performance is significantly lower than observed in synthetic data
(36.6%) while still better than random chance. However these real-world time series were
collected from online datasets and represent world knowledge that could be part of the
LM’s parametric knowledge, and not indicate genuine zero shot-time series reasoning. This
is also supported by the fact that GPT-4 with and without access to the actual time series
again perform similarly.

In summary we show that LMs exhibit (near-)random performance on meaningful QA tasks
while human evaluations demonstrate that significantly better performance is possible,
using the exact same set of information given to the LMs. In none of these zero-shot
evaluations did LMs perform better with than without the time series, suggesting that
current LMs cannot perform time series reasoning.

6 Context-Aided Forecasting

We next evaluate whether capable LMs can leverage relevant textual context when fore-
casting future time series values. We build on recent works that find LMs can non-trivially
zero-shot forecast time series (Gruver et al., 2023; Xue & Salim, 2023). Using the same zero-
shot forecasting method as LLM-TIME (Gruver et al., 2023), we experiment with prepending
different corresponding textual context alongside the time series. Specifically, we randomly
select 2000 time series with their captions, descriptions, and metadata, feed the first 80% of
the time series into GPT-4 and then forecasts the remaining 20% of the timesteps. Further
method details are in Appendix A.1. This textual context contains highly-relevant informa-
tion, occasionally including future information about the series’ behavior. To understand how
well these methods compare to a simple baseline we include the “Predict Median” baseline,
which simply computes the median of the first 80% of a time series’ values then repeats it
for the forecasting window.

We measure forecasting success using the common metrics Mean Absolute Error (MAE)
and Mean Squared Error (MSE). Since the values of the time series in our dataset span
several orders of magnitude we min/max and z-score normalize values before computing
these metrics so that error on high-magnitude series does not dominate perceived model
performance.

Highly-relevant captions barely change LM forecasts. As shown in Figure 3, adding all
textual context barely changes MAE, despite often having access to descriptions of future
information. Of 2,000 zero-shot samples, only 1,040 show improvement in MAE when
the full context is shown and in the remaining time series MAE increases. An example is
illustrated in Figure 4, showing that the LM ignores potentially useful information in the
context. We also experimented with other combinations of metadata, characteristics, and
descriptions and found that adding more information gradually improves performance, but

8
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0.00 0.10 0.20 0.30

Predict Median

LLM-TIME (GPT-4)
wo/ Context

LLM-TIME (GPT-4)
w/ all Context

(a) MAE with max-min normalization

0.00 0.40 0.80

Predict Median

LLM-TIME (GPT-4)
wo/ Context

LLM-TIME (GPT-4)
w/ all Context

(b) MAE with z-score normalization

Figure 3: After adding contextual information corresponding to the time series, forecasting
performance improved marginally and is still the same or worse than a simple baseline that
only predicts the median of the historical signal (Section6).

Context: 
(1) … cyclical pattern, with consumption increasing 
during daytime hours and decreasing during nighttime. 
(2) The electricity consumption might be slightly higher 
during the morning and evening, corresponding to   …

❌

✅

��������������
����������������

���	���

Figure 4: An example of forecasting with context. This data is sampled every 15 minutes
from 0:00 to 23:45, with electricity usage dropping sharply near midnight. The starting time
for forecasting is 19:15. The left side displays the captions in our dataset and the right side
presents the performance of LLM-TIME (GPT-4) with all context which fails to incorporate
this highly-relevant information.

overall performance remains below or comparable to the weak “Predict Median” baseline
(Section E).

This lack of improvement is surprising and demonstrates a clear gap in these LM-powered
methods’ capacities to leverage relevant text when forecasting time series. Further, neither
LM-power forecasting method clearly outperforms the simple “Median Prediction” baseline.
We note that because our series were intentionally designed to contain interruptions from
external events (Section 3) median prediction is a particularly weak baseline on our dataset.

This experiment shows that current LMs largely fail to use context to inform forecasting.

7 Related Work

7.1 Datasets for Time Series and Language

There are dozens of prominent time series classification and forecasting datasets, many of
which aggregate data from diverse domains (Tan et al., 2020; Dau et al., 2018; Bauer et al.,
2021; Grauman et al., 2023). Unlike these datasets, which focus exclusively on time series,
our goal is to evaluate the relationship between time series and text and motivate time
series reasoning as an area of research beyond forecasting and classification. Some datasets
focus on single-domain question answering with time series. Oh et al. (2023) and Xing et al.
(2021) provide a question answering dataset based on templated questions relating to ECG
features and activity recogntion, whereas Xie et al. (2023) present templated questions that
concern tweets and historical stock price data.

7.2 Language Models and Time-Series

Recent works have demonstrated that language models (LMs) perform well in time series
tasks, such as forecasting (Gruver et al., 2023) or classification (Zhou et al., 2023). These can
be categorized into two paradigms. The first involves fine-tuning language models, such as
Bert or LLAMA-7B, for specific tasks and datasets (Zhou et al., 2023; Jin et al., 2024; Cao
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et al., 2024). The second approach entails inputting specially tokenized time series into an
LLM for forecasting , imputation, and classification tasks (Gruver et al., 2023; Xue & Salim,
2023).

Most tasks that use textual context to aid time series forecasting focus on a single domain
and require fine-tuning the model itself with domain-specific data. In cross-domain tasks,
the strategy often involves fitting one dataset and then transferring to another (Jin et al.,
2024; Cao et al., 2024; Zhou et al., 2023; Wang et al., 2023a). This approach is not suitable for
our dataset, where each time series originates from a different setting, making it impossible
to fit each domain individually or have sufficiently many similar sequences for transfer.
Therefore, to evaluate our entirely cross-domain dataset, we utilize the latest state-of-the-art
zero-shot method, LLM-TIME Gruver et al. (2023), as our baseline.

8 Conclusion

We identified three forms of time series reasoning and used them to create a first-of-its-kind
dataset of time series and highly relevant text. We then used this dataset to assess etiological
reasoning, question answering, and context-aided forecasting. Given the substantial gap
between language model and human performance on the first two tasks, and mediocre
performance on the third, we identified opportunities for the NLP community to develop
models that can deeply reason about these critical data.
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Computers and electronics in agriculture, 147:70–90, 2018.

Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for
irregularly sampled time series. In NeurIPS, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
arXiv preprint arXiv:2304.08485, 2023a.

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan,
Ming-Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models
are few-shot health learners. arXiv preprint arXiv:2305.15525, 2023b.

Thomas Mesnard, Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
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Figure A.1: By simulating time series with GPT-4-generated code (rather than generating
the series directly from the model itself) we’re able to produce substantially more complex
data which better represent realistic scenarios.

A Appendix

A.1 Numerical Tokenization

We use the LLM-TIME (Gruver et al., 2023) as a baseline for ”contextual reasoning” to eval-
uate LLM‘s reasoning performance in time series forecasting when captions are provided.
The performance of LLM-TIME is partly attributable to their special numerical tokenization
method. The original input (20.88, 20.20, 20.48, . . . below), is first z-score normalized and
then scaled to a constant power of ten (1e3 below):

20.88, 20.20, 20.48, . . . → 1.0522, 1.0178, 1.0324, . . . → 1052, 1017, 1032, . . .

Note that there are subtle differences in tokenization for GPT-3 and LLama.2

B Additional Results

B.1 Training Multimodal Models on Etiological Reasoning Task

Is putting time series into a prompt as text the best way to model these data? Here we exper-
iment with five alternative modeling techniques, each adapted from an existing multimodal
architecture. When training models owe wanted to keep the results roughly comparable to
zero-shot experiments so we reserved the “Health and Medical Data”, “Agricultural and
Food Production” and “Educational and Public Services” categories for testing and trained
on the remainder.

Whisper. Speech-to-text models can be thought of as special cases of time-series-to-text
models since microphone-recorded audio is a 1D sensor reading. We modify Whisper
(Radford et al., 2022) to compute spectrograms of arbitrary time series and fuse these with
GPT-2 inputs via cross attention.

LLAVA-Matplotlib-Zero-Shot. (Liu et al., 2023a) supports visual instruction tuning by
training a linear adapter between a vision encoder and a language model’s token embedding
space. Following Li et al. (2023) we encode time series by plotting them in Matplotlib and
saving the results as 224x224 images. These images are fed directly into LLaVA’s pretrained
CLIP encoder. As the name suggests, this model was not trained and instead relies entirely
on the pretrained LLaVA weights.

LLAVA-Matplotlib. This experiment is the same as the previous, but we began by tuning
LLaVA’s adapters using the seven held-out scenario categories.

2https://github.com/ngruver/llmtime
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Model/Task Etiological Reasoning

Human 66.1%

Whisper 23.6%
LLAVA-Matplotlib-Zero-Shot 24.3%
LLAVA-Matplotlib 26.1%
LLAVA-TimesNet 23.5%
LLAVA-Spectrogram 26.1%

Table A.1: Perfomance of multimodal models trained on the etiological reasoning task
(Section 4)

Model/Generator LM LLAMA-13B GEMMA-7B

LLAMA-13B- No TS 88.1% 88.5%
LLAMA-13B 87.0% 87.3%
GEMMA-7B- No TS 86.6% 88.5%
GEMMA-7B 87.2% 88.3%
GPT-3.5- No TS 96.8% 97.0%
GPT-3.5 96.4% 97.1%
GPT-4- No TS 97.5% 97.7%
GPT-4 97.2% 97.4%

Table A.2: Accuracy of LMs on counterfactual MCQs generated using LLAMA-13B and
GEMMA-7B.

LLAVA-Spectrogram. Spectrograms are 2D representations of a time series and can be
passed to standard vision encoder. For this experiment we computed spectrograms and fed
them imto LLaVA’s clip encoder.

LLAVA-TimesNet. In this experiment we replaced LLaVA’s CLIP encoder with the TimesNet
Wu et al. (2023) encoder. TimesNet adaptively maps 1D time series signals into a 2D space
that can be interpreted by computer vision kernels and was designed as a general-purpose
time series encoder. Since there is no pretrained TimesNet checkpoint in this experiment we
freeze only the LLaMA backbone and allow the model to learn weights in the encoder.

The results show that all models struggle to learn etiological relationships between time
series and text. Each model performs within an epsilon of random performance (25%). We
conclude that even models finetuned on these data have limited capacity to reason about
time series.

B.2 MCQ Generation using other LMs

Here, we evaluate the ability of LM other than GPT-4 to generate MCQs. Specifically, we cre-
ated counterfactual scenarios and the corresponding questions using two LM – LLAMA-13B
and GEMMA-7B Mesnard et al. (2024). Across each setting, we used 100 time series examples
and created a set of almost 1000 MCQs for each LLM. The results across these datasets
clearly show that GPT-4 achieves significant performance across the MCQs generated using
LLAMA-13B and GEMMA-7B, even in the absence of any time series information (Table A.2).
This can be attributed to the limited ability of LMs in understanding the dynamics within
time series data and creating questions solely based on their textual descriptions. These
results reinforce that other LMs may not be suitable for generating time series-specific
questions and, consequently, for training models to evaluate time series reasoning ability.

B.3 Using Different Methods to Prompt Time-series

Here, we evaluate different methods of passing a time series to a language model. This task
is incredibly important, as recent research has shown that changing the tokenization for
time series can lead to it being easily confused by language models and can result in state-
of-the-art results in forecasting Gruver et al. (2023). Therefore, in this section, we compare
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We track the daily coffee sales in a small café located near a college. Sales might increase during
exam periods when students stay up late. The sample rate will be daily over a year (365
observations).

Coffee Sales Data
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Environmental and Climate
Consider a scenario of rainfall measuring agency operating in a region known to be affected by
monsoon yearly. The agency measures daily rainfall, recorded in mm, over the span of one
monsoon season (120 days). Significant external events are monsoon onset and monsoon offset
which substantially increase and decrease rainfall respectively.

Monsoon Rainfall Data
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Energy and Resource Consumption
The scenario involves monitoring the daily power usage of a data center over a period of two
years, recorded every day at midnight. Any increases in the usage could likely be related to
additional servers being added or peak periods of client activity. Summer heat waves could also
boost air conditioning use and hence power consumption.

Data Center Power Usage.
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nt Entertainment
Over a period of two years, the time series is developed to observe and understand the pattern
in the footfall count at a movie theater. Here, the external event is the release of blockbuster
movies, which greatly increases the footfall. The sample rate of this time series is daily.
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This scenario tracks the daily followers count of a rising Instagram influencer over a 2-year
period. The influencer starts with modest followers but gets a significant boost after being
featured in a viral video on a popular YouTube channel. The time series is sampled daily and
the sample rate is 1 sample per day.

Instagram Follower Tracking
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s Transport and Traffic Trends
The scenario involves tracking the number of trains passing a particular station per hour over
one month. An external event such as a railway strike could result in a decreased number of
trains during the strike period. The time series data is sampled every hour.

Train Frequency Tracking
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s Health and Medical Data
A time series measuring daily steps of a fitness enthusiast. He promised to increase his daily
steps due to the new year's resolution starting from January 1. The series will track his steps for
365 days, sampled daily. The external event here is the New Year.

Daily Steps Tracking
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Agriculture and Food
This scenario involves the monitoring of temperature in an agritech controlled environment
where special hybrid crops are grown.  Let's say on the 3rd day, a power outage occurred,
having an impact on the heating system, thus this event will influence an unusual decrease in
the temperature.

Agritech Temperature Tracking
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s Wildlife and Nature

This scenario involves the tracking of honeybee population in a particular hive over one year.
The external event could be a pesticide spray in nearby fields, resulting in a decline of the
population. The sample rate is measured weekly, resulting in about 52 observations in a year.

Beehive Population
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s Educational and Public Services
A tech vlogging YouTube channel decides to create a daily series about coding tutorials in
Python. The channel launches the series targeting especially beginners. The series gets
popularity upon the introduction of a new trending Python library for Machine learning during
the month, causing a spike in viewership. The time series will be recorded on a daily basis over a
duration of 180 days (6 months).

Youtube Python Tutorials

Figure A.2: One scenario from each of our ten categories (Section 3).
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Model/Task Single TS MCQ Multiple TS MCQ

Plain Text LLM-TIME Plain Text LLM-TIME

LLAMA-7B 78.6 78.8% 25.2% 25.1%
LLAMA-13B 82.4 82.5% 25.7% 25.8%
GPT-3.5 88.2 88.2% 27.0% 27.1%
GPT-4 92.2 92.3% 52.5% 52.5%

Table A.3: LMs’ accuracy on MCQs when time-series are given as comma-separated values
in plain text and tokenized using LLM-TIME.

two methods used in LLM-TIME Gruver et al. (2023): specifically, passing tokens as comma-
separated values and using the tokenization procedure described in Appendix A.1. Our
results across both methods show insignificant differences in the ability of LMs to answer
MCQs (Table A.3). However, we note that LM with time series encoded as LLM-TIME
obtains slightly better performance.

B.4 Examples of Single Time Series MCQs

Here we provide a few examples of single-time series MCQs. Specifically, for the time series
given in Figure A.3, we queried GPT-4 and obtained the following MCQs.

Q. How would the series be affected if the cafe started to remain open all night?
A. If the cafe started to remain open all night the timeseries would show no

change in customer counts as the patterns remain the same.
B. If the cafe remained open all night the periods that previously showed zero

customer counts due to closure would now show some level of customer
activity. However the counts during these late hours would typically be
lower compared to the breakfast and lunch times.

C. If the cafe started to remain open all night the timeseries would show higher
customer counts during the day and a decrease in counts during the night

when the cafe is closed.
D. If the cafe started to remain open all night the timeseries would show

significant spikes in customer counts throughout the day.

Q. How would the time series be different if the TV show started to air on
Wednesdays instead of Sundays?
A. If the TV show started to air on Wednesdays instead of Sundays the timeseries

would show no change in customer counts as the patterns remain the same.
B. If the TV show aired on Wednesdays instead of Sundays the pronounced spikes

in the customer counts would shift to reflect this change. This means we
would start to see the spikes on Wednesdays and continue for the next few
days following the broadcast.

C. If the TV show started to air on Wednesdays instead of Sundays the timeseries
would show increased customer counts throughout the week.

D. If the TV show started to air on Wednesdays instead of Sundays the timeseries
would show a decrease in customer counts on Wednesdays and an increase on

Sundays.,
Q. What would the effect on the customer count be if the cafe started serving dinner

and remained busier during evening hours?
A. If the cafe started serving dinner and remained busier during evening hours

the timeseries would show a decrease in customer counts during dinner time.
B. If the cafe started serving dinner and remained busier during evening hours

the timeseries would show increased customer counts only during dinner time.
C. If the cafe started serving dinner and remained busier during evening hours

the timeseries would show no change in customer counts as the patterns
remain the same.

D. If the cafe became busier during dinner time then the unknown counts during
evening hours would increase. This could introduce another cyclical pattern
in the time series corresponding to dinner hours similar to those observed
during breakfast and lunch times.
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Figure A.3: An example time-series with description: ’Customer counts at a cafe following a
TV feature over two week period.’

B.5 Manually Perturbed MCQs

In this section, we highlight the procedure we use to manually perturb the MCQs generated
by GPT-4. In detail, we aim to test the robustness of GPT-4 across slightly modified versions
of the same set of MCQs it generated. For this, consider the following MCQs generated by
GPT-4 for two independent time series. These questions aim to compare the time series
updated by the ’what-if’ scenario with the original time series.

Q. Do both the original and updated time series have the same starting base level of
pollution?

A. No the updated series starts at 0 units of pollution.
B. No the base level in the updated series is 1500 units.
C. Yes both start with a base level of 1000 units of pollution.
D. No the base level in the original series is 500 units.

Q. Is there a change in the visitor count during the pandemic period in the modified
time series compared to the original?

A. The visitor count during the pandemic does not drop to 0 in the modified
series.

B. There is no change the visitor count during the pandemic period drops to 0 in
both.

C. The visitor count during the pandemic becomes 1500 in the modification.
D. The pandemic period is removed in the modification.

To change the question, we select the correct option – option C and option B respectively,
and create a similarly looking incorrect option. Later, we replace this perturbed option with
a randomly selected incorrect option and test the LMs’ ability in responding to the MCQ.
The following shows the updated MCQs with options D and C being the perturbed options.
Upon evaluating both the MCQs, we note that GPT-4 and other LMs selected the perturbed
option as their choice of answer. However, we also note that the LMs across different runs
selected the correct option, i.e., option C and Option B too. But the goal of the manual
perturbation succeeds in showing that LMs cannot understand and select an answer using a
time series and mostly select options based on their similarity to the option they originally
generated.

Q. Do both the original and updated time series have the same starting base level of
pollution?

A. No the updated series starts at 0 units of pollution.
B. No the base level in the updated series is 1500 units.
C. Yes both start with a base level of 1000 units of pollution.
D. Yes both start with a base level of 500 units of pollution.

Q. Is there a change in the visitor count during the pandemic period in the modified
time series compared to the original?

A. The visitor count during the pandemic does not drop to 0 in the modified
series.
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Figure A.4: COVID-19 cases for Massachusetts: An example of real data time series used for
generating MCQs.

B. There is no change the visitor count during the pandemic period drops to 0 in
both.

C. There is no change the visitor count during the pandemic period drops to 10
in both.

D. The pandemic period is removed in the modification.

B.6 Handcrafted MCQs

Here we provide some examples of the completely handcrafted MCQs generated for real-
world time series. Specifically, for the time series depicted in Figure A.4, illustrating the
COVID-19 cases in the state of Massachusetts3, we created the following questions.

Q. When was the number of cases the lowest in the time series?
A. July 2, 2023.
B. June 30, 2024.
C. August 1, 2024.
D. November 30, 2023.

Q. When was the number of cases the highest in the time series?
A. September 31, 2023.
B. January 1, 2024.
C. March 2, 2024.
D. August 30, 2023.

Q. What is the visual representation of the time series?
A. The cases steadily decrease over time with no discernible peaks.
B. The cases show minor fluctuations that go down but then go up with an

exponential rate.
C. A first peak is obtained then a drop in cases. Then a second peak is

achieved that is higher than the first.
D. The number of cases remains constant throughout the observed period, however,

they suddeny increase around the mid of March.

Q. What is the difference between the max of both the peaks in September 2023 and
January 2024?
A. The difference is negligible between the peaks of September 2023 and January

2024.
B. September 2023 had a higher peak compared to January 2024.
C. The peaks in September 2023 and January 2024 are identical.
D. January 2024 is almost twice of September.

C Prompt For Scenario Generation

We used the following prompt to generate the time series scenarios described in Section 3.

3https://www.mass.gov/info-details/covid-19-reporting

19



Preprint. Under review.

1. Describe a scenario that might produce a time series. This scenario should
include an external event and how it might influence the reading. Be sure to
describe the sample rate of the time series and the duration over which it is
sampled. The description should be less than 100 words in length. Delimit this
description with the XML tag <description>.

The time series must be less than 1000 observations in length, be a single
variable, have no values greater than 1e6, and have no missing values.

Also add a summary of the description, no more than 25 words in length with the
tag <description_short>. Also add summary, no more than three words in
length with the tag <description_tiny>. The scenario should be as different
as possible from any of the following: [<previous_descriptions>]

2. You will generate a list of up to five characteristics of this specific time
series, including patterns that you might expect to see in the series and how
external events might cause distribution shifts in the data generating process.
Delimit these characteristics with the XML tag <characteristics>.

3. You will write a numpy function called `generate_series` that takes no
arguments and outputs a time series that matches the description. All
parameters from the data generating process should be drawn from reasonable
distributions. The function must return a single numpy array. Place this code
inside a python markdown block and delimit your code with the XML tag <
generator>. Do not call the function, simply define it. You should also make
sure that the scale of time series is realistic. For example, a time series of
a quantity like stock price should never be less than zero.

4. Return a json string, delimited by the tag <metadata> that contains the units
of the time series and the timestamps corresponding to the first and last
values. Remember that in JSON format datetimes must be passed as strings. Also
include a string that relects the frequency of the time series.

Here is an example of a complete response:
<description> *your description* </description>
<description_short> *your description* </description_short>
<description_tiny> *your description* </description_tiny>
<characteristics> *your characteristics* </characteristics>
<generator>

```python
def generate_series():

# your code here
return x

```
</generator>
<metadata>

{
"start": x,
"end": y,
"units": z,
"frequency" : freq
}

</metadata>

D Prompt For MCQ Generation

D.1 Prompt for Single Time-Series MCQs

We use the following prompt to generate the MCQs around single-time series described in
Section 5.

1. Given a description of a time-series, a set of sentences describing its
characteristics, and a python code segment that generates this time-series. You
have to create five counterfactual question-answer pairs. Counterfactual
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reasoning questions involve exploring hypothetical scenarios by considering
what would have happened if certain events or conditions had been different
from what actually occurred.

2. For example, 'What will the time-series look like if some event occured?'.
Generate a wide-range of questions. Create questions and answers that avoid
referencing or directly quoting code or the description. Avoid asking questions
specifically tied to the description or the Python code. The questions should

require an understanding of time-series dynamics for accurate answers.

3. The answers should not mention the description or the code at all. Provide the
questions and answers in the following exact format: '{'category':'"+et+"', '
question':'', 'answer':''}'. Ensure that each question and its corresponding
answer are presented on the same line, with each new question starting on a new
line for a clear and organized format.

4. Using the set of question-answer pairs, create three incorrect answer options
for each question. Your incorrect answers should have similar lengths compared
to the correct answers. The input format is: '{'question':'', 'answer':''}'. In
the output, you should copy the question and answers from the input and

provide incorrect options in the following format: '{'question':'', 'answer':'',
'incorrect answer 1':'', 'incorrect answer 2':'', 'incorrect answer 3':''}\n'.
Each new question should start on a new line. Do not separate question, its

answer and options into different lines. Ensure that each question, its
corresponding answer and incorrect answers are presented on the same line. Do
not use any double quotations within the text.

5. Avoid the use of contractions in all kinds of notations. Instead, use the full
forms for greater clarity. If there exists any contraction in the question or
answer, then replace it with the full-form. Do not generate any additional text.

D.2 Prompt for Multiple Time-Series MCQs

For generating MCQs that operate at the intersection of multiple time-series, we employed
the following steps:

D.2.1 Creating a list of ’what-if’ scenarios for a time series

1. You have been given a description of a time series and a code that generates
the time-series. Your task is to create five counterfactual questions that
someone can ask regarding this time series.

2. Try to formulate questions that are distinct from each other. Additionally,
ensure that the questions aim to bring about significant changes to the time
series. Make sure that the new time series can be easily generated by modifying
the code and do not ask extremely difficult questions.

3. Format the output as follows:'{'question'}'\n, with each new question starting
on a new line. The counterfactual questions should explore hypothetical
scenarios and involve 'What-if' type inquiries. The questions should not
include values directly from the original time series or code. For instance, '
What if the start was 25 units' is preferred over 'What if the start was 25
units instead of 20 units?'.

4. Avoid referencing random noise, the random number generator, its mean, or
variance in any question. Do not generate any additional text.

D.2.2 Creating a new time-series

For each time series x (Section 3) and a ’what-if’ scenario outlined in the previous para-
graph, we employ GPT-4 to generate the corresponding generative function. This function
simulates a second time series, denoted as x, reflecting the ’what-if’ scenario. We used the
following prompt to generate the updated time series

21



Preprint. Under review.

1. Generate a new Python code for a time series based on the given code and
description. The user will specify a change in the time series, and you should
produce the updated code using the function name 'generate_series'.

2. Always ensure the length of the time series remains unchanged. This is hard
constraint that should not be violated. Keep realistic expectations and ensure
the length of the time series remains unchanged. For example, (1) keep the rate
of change consistent rather than the actual values. (2) Understand what

changes the user's suggestion can make to the time series and then update the
code accordingly. (3) Given a time series code, you have the freedom, and in
some cases, the obligation, to modify any pre-defined maximum or minimum values
specified in the original code to accurately represent the desired change.

3. Ensure that the new time series adheres to real-world principles; for instance,
maintaining a consistent rate of change under typical conditions. If the

change demands that the time series has an offset by some units, then modify
this value in the code as well.

4. Return the output in the format ```new code```, where the 'new code' is
replaced by the updated code. Try to create code that generates a time-series
that is significantly different from the time-series produced by the original
code, but with same lengths.

5. Always return the code in a format that can be executed directly using the exec
() function. Avoid additional text.

D.3 Creating MCQs

Utilizing the ’what-if’ scenario, brief captions, and both time series x and x, along with their
generating functions, we construct multiple-choice questions (MCQs). These MCQs aim to
evaluate the similarities and differences between the two time series. We used the following
prompt to generate the MCQs around single-time series described in Section 5.

1. Given two Python codes for generating time series, the first representing the
original time series with a description, and the second presenting a
modification of the original time series under specific conditions.

2. Your task is to ask five questions regarding the differences between both time
series. Also ask five questions regarding the simmilarity between both time
series. Additionally, provide answers to all the questions and three negative
or incorrect options. Ask questions regarding the patterns within both time-
series, such as how they appear, the rates of change, and any specific
differences in trends. Format the output as follows:'{'category':'difference/
simmilarity', 'question':'', 'answer':'', 'incorrect answer 1':'', 'incorrect
answer 2':'', 'incorrect answer 3':''}'.

3. Make sure you follow the following rules: (1) Do not ask question regarding the
lengths or the number of data-points within both the time-series. (2) Ensure

that the questions and answers give the impression of being created
independently, in the absence of the code, solely by examining the time series.
(3) Do not mention anything regrarding the random noise or random number

generator in both the answers and questions. (4) Try to keep the answers short
and not very detailed. (5) Ensure that each question and its corresponding
answer are presented on the same line, with each new question starting on a new
line for a clear and organized format. (6) Try to add numerical values to

answers wherever possible, but make sure you use words such as 'seems to be' or
'around value' so that they appear to be approximate. Avoid unnecessary text

and focus on precision.

E Additional Results for Context-Aided Forecasting

In this section, we will present more results and examples on how LLM reasons through
context in forecasting. Figure A.5 shows the full results for two metrics, MAE and MSE, both
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derived from the average of 2000 samples. Each result will be independently normalized
before calculating the metrics. Overall, it can be seen that as more captions are provided,
LLM’s reasoning in forecasting only improves slightly. Even when all captions are provided,
the aid remains quite marginal. Two examples of how LLM integrates context into forecasting
are shown in Figure A.6, where figure (a) demonstrates that LLM can reason out difficult-to-
forecast distribution shifts from captions. However, as seen in figure (b), even when highly-
relevant caption are provided, it still does not enhance the forecasting. There are even case
like in Figure A.7, where LLM ”misinterprets” the hints in the captions, leading to completely
opposite conclusions. Additionally, even though current LLMs show quite limited zero-shot
reasoning ability about time series, they still demonstrate somewhat potential. Examples in
Figure A.8 illustrate some successful cases. Therefore, we believe that with the development
of general models, LLM’s reasoning ability on numerical sequences, especially with natural
language context, will gradually improve.
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(a) MAE with max-min normalization
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Figure A.5: These figures indicate that after adding various context relevant to the time series,
the forecast results improved marginally. We use ”Predict Median”, ”LLM-TIME (Gruver
et al., 2023) (GPT-4)”, and ”TS as Plain Text (GPT-4)” as our baselines. In the baseline, LLM
forecasts without context (wo/ Context). It can be observed that whether providing Caption
(Ca), Characteristics (Ch), or Metadata (Me) individually, such as ”LLM-TIME (GPT-4) w/
Ca”, or combining all captions, for example, ”LLM-TIME (GPT-4) w/ all Context”, the
overall improvement remains very limited.
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Context: 
(1) Slow decrease of temperature once 
power is restored until it reaches … 
(2) Stable temperature values before 
the outage and after temperature …  
(3) Overall time series has slow ascend- 
ing and descending trends during …

✅

✅

✅
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(a) LLM reasoned out the distribution shift in the time series from the captions.

Context: 
(1) Overall increasing trend in website 
visits due to growing popularity. 
(2) Daily seasonality due to increased 
visits during peak hours. 
(3) A large spike in visits during the 
discount event.

✅

✅

✅
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(b) Evne in a relatively simple pattern, the LLM fails to effectively understand captions.

Figure A.6: Figures (a) and (b) are two typical examples showing that LLM can reason out
difficult-to-forecast distribution shifts from captions. However, in a simple pattern, even
when accurate captions are provided, it still fails to reason effectively.

Context: 
1. The time series will likely show an   
increasing trend as the hurricane … 
2. Wind speeds peak during the …
hurricane and slowly decrease afterwards. 
3. There might be some abrupt spikes in 
wind speeds due to strong gusts.

✅

❌
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Figure A.7: An example shows that LLMs, during the forecasting process, ”misunderstood”
the descriptions of time series trends in the captions, resulting in completely opposite
reasoning.
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(a) For simple distribution shifting pattern, captions improves reasoning during forecasting.
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(b) For very difficult to forecast time series, captions still provide significant help to LLM reasoning.

Figure A.8: Examples (a) and (b) show that integrating captions into forecasting, whether
utilizing the LLM-TIME method or directly using GPT-4, helps with LLM reasoning.
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Figure A.9: A screenshot of the tool used by human annotators in the etiological reasoning
task (Section 4)
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Figure A.10: Portion of scenario categories in our generated dataset (Section 3).
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