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Abstract
Advances in artificial intelligence (AI) are enabling systems that augment and collaborate with humans
to perform simple, mechanistic tasks like scheduling meetings and grammar-checking text. However,
such Human-AI collaboration poses challenges for more complex tasks, such as carrying out empathic
conversations, due to difficulties of AI systems in navigating complex human emotions and the open-ended
nature of these tasks. Here, we focus on peer-to-peer mental health support, a setting in which empathy is
critical for success, and examine how AI can collaborate with humans to facilitate peer empathy during
textual, online supportive conversations. We develop HAILEY, an AI-in-the-loop agent that provides just-
in-time feedback to help participants who provide support (peer supporters) respond more empathically
to those seeking help (support seekers). We evaluate HAILEY in a non-clinical randomized controlled
trial with real-world peer supporters on TalkLife (N=300), a large online peer-to-peer support platform.
We show that our Human-AI collaboration approach leads to a 19.6% increase in conversational empathy
between peers overall. Furthermore, we find a larger 38.9% increase in empathy within the subsample of
peer supporters who self-identify as experiencing difficulty providing support. We systematically analyze
the Human-AI collaboration patterns and find that peer supporters are able to use the AI feedback both
directly and indirectly without becoming overly reliant on AI while reporting improved self-efficacy
post-feedback. Our findings demonstrate the potential of feedback-driven, AI-in-the-loop writing systems
to empower humans in open-ended, social, and high-stakes tasks such as empathic conversations.

Introduction
As artificial intelligence (AI) technologies continue to advance, AI systems have started to augment and
collaborate with humans in application domains ranging from e-commerce to healthcare1–9. In many and
especially in high-stakes settings, such Human-AI collaboration has proven more robust and effective than
totally replacing humans with AI10, 11. However, the collaboration faces dual challenges of developing
human-centered AI models to assist humans and designing human-facing interfaces for humans to interact
with the AI12–17. For AI-assisted writing, for instance, we must build AI models that generate actionable
writing suggestions and simultaneously design human-facing systems that help people see, understand
and act on those suggestions just-in-time17–23. Though initial systems have been proposed for tasks like
story writing18 and graphic designing24, it remains challenging to develop Human-AI collaboration for a
wide range of open-ended, social, and high-stakes tasks, as opposed to simple, mechanistic tasks, like
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scheduling meetings, checking spelling and grammar, and booking flights and restaurants.
In this paper, we focus on text-based, peer-to-peer mental health support and investigate how AI

systems can collaborate with humans to help facilitate the expression of empathy in textual supportive
conversations. Empathy is the ability to understand and relate to the emotions and experiences of others
and to effectively communicate that understanding25. Empathic support is one of the critical factors
that contributes to successful conversations in mental health support, showing strong correlations with
symptom improvement26 and the formation of alliance and rapport25, 27–29. While online peer-to-peer
platforms like TalkLife (talklife.com) and Reddit (reddit.com) enable such supportive conversations
between support seekers (people who seek support) and peer supporters (people who provide support)
in non-clinical contexts, highly empathic conversations are rare on these platforms29. Peer supporters
are typically untrained in expressing complex and open-ended skills like empathy30–33 and may lack
the required expertise. With an estimated 400 million people suffering from mental health disorders
worldwide34, combined with a pervasive lack of qualified mental health professionals35, 36, these platforms
have pioneered avenues for seeking social support and discussing mental health issues for millions of
people37. However, the challenge lies in improving conversational quality by encouraging untrained peer
supporters to adopt complicated and nuanced skills like empathic writing.

As shown in prior work38, 39, untrained peer supporters report difficulties in writing supportive,
empathic responses to support seekers. Without deliberate training or specific feedback, the difficulty
persists over time29, 40, 41 and may even lead to a gradual decrease in supporters’ effectiveness due to factors
such as empathy fatigue42–44. Furthermore, current efforts to improve empathy (e.g., in-person empathy
training) do not scale to the millions of peer supporters providing support online. Thus, empowering peer
supporters with automated, actionable, just-in-time feedback and training, such as through Human-AI
collaboration systems, can help them express higher levels of empathy and, as a result, improve the overall
effectiveness of these platforms29, 45–47.

To this end, we develop and evaluate a Human-AI collaboration approach for helping untrained
peer supporters write more empathic responses in online, text-based peer-to-peer support. We propose
HAILEY (Human-AI coLlaboration approach for EmpathY), an AI-in-the-loop agent that offers just-
in-time suggestions to express empathy more effectively in conversations (Figure 1b, 1c). We design
HAILEY to be collaborative, actionable and mobile friendly (Methods).

Unlike the AI-only task of empathic dialogue generation (generating empathic responses from
scratch)48–50, HAILEY adopts a collaborative design that edits existing human responses to make them
more empathic47. This design reflects the high-stakes setting of mental health, where AI is likely best used
to augment, rather than replace, human skills46, 51. Furthermore, while current AI-in-the-loop systems
are often restricted in the extent to which they can guide humans (e.g., simple classification methods
that tell users to be empathic when they are not)52–55, we ensure actionability by guiding peer supporters
with concrete steps they may take to respond with more empathy. HAILEY is designed to suggest the
insertion of new empathic sentences or replacement of existing low-empathy sentences with their more
empathic counterparts (Figure 1c). For complex, hard-to-learn skills like empathy, this enables just-in-time
suggestions on not just “what” to improve but on “how” to improve it.

We consider the general setting of text-based, asynchronous conversations between a support seeker
and a peer supporter (Figure 1). In these conversations, the support seeker authors a post seeking mental
health support (e.g., “My job is becoming more and more stressful with each passing day.”) to which
the peer supporter writes a supportive response (e.g., “Don’t worry! I’m there for you.”). In this context,
we support the peer supporters by providing just-in-time AI feedback to improve the empathy of their
responses. To do so, HAILEY prompts the peer supporter through a pop-up (“Would you like some help with
your response?”) placed above the response text box. On clicking this prompt, HAILEY shows just-in-time
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Figure 1. We performed a randomized controlled trial with 300 TalkLife peer supporters as participants. We
randomly divided participants into Human Only (control) and Human + AI (treatment) groups and asked them to
write supportive, empathic responses to seeker posts without feedback and with feedback, respectively. To identify
whether just-in-time Human-AI collaboration helped increase expressed empathy beyond potential (but rare)
traditional training methods, participants in both groups received initial empathy training before starting the study
(Methods; Supplementary Figure S1). (a) Without AI, human peer supporters are presented with an empty chatbox
to author their response (the current status quo). As peer supporters are typically untrained on best-practices in
therapy – such as empathy – they rarely conduct highly empathic conversations. (b) Our feedback agent (HAILEY)
prompts peer supporters for providing just-in-time AI feedback as they write their responses. (c) HAILEY then
suggests changes that can be made to the response to make it more empathic. These suggestions include new
sentences that can be inserted and options for replacing current sentences with their more empathic counterparts.
Participants can accept these suggestions by clicking on the Insert and Replace buttons and continue editing the
response or get more feedback, if needed.

Human Only 
(Control Group)

Human + AI
 (Treatment Group)

(b) (c)(a)

Actions to Edit 
Response

Reload Feedback 
If Required

Feedback

Feedback Prompts
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AI feedback consisting of Insert (e.g., Insert “Have you tried talking to your boss?” at the end of the
response) and Replace (e.g., Replace “Don’t worry!” with “It must be a real struggle!”) suggestions based
on the original seeker post and the current peer supporter response. The peer supporter can incorporate
these suggestions by directly clicking on the appropriate Insert or Replace buttons, by further editing
them, and/or by deriving ideas from the suggestions to indirectly use in their response. These suggestions
are generated using PARTNER, a deep reinforcement learning model that learns to take sentence-level
edits as actions in order increase expressed level of empathy while maintaining conversational quality
(Methods)47, 56.

To evaluate HAILEY, we conducted a randomized controlled trial in a non-clinical, ecologically
informed setting with peer supporters as participants (N=300; Supplementary Table S1), recruited from
a large peer-to-peer support platform, TalkLife (talklife.com). Our study was performed outside the
TalkLife platform to ensure platform users’ safety but adopted an interface similar to TalkLife’s chat
feature (Figure 1; Methods). We employed a between-subjects study design, where each participant was
randomly assigned to one of two conditions: Human + AI (treatment; with feedback) or Human Only
(control; without feedback).

While peer supporters do not typically receive empathy training from these platforms, we provided
participants in both Human + AI (treatment) and Human Only (control) groups with basic training on
empathy, which included empathy definitions, frameworks, and examples just before the main study
procedure of writing supportive, empathic responses (Supplementary Figure S1). This let us conservatively
estimate the effect of just-in-time feedback beyond traditional, offline feedback or training (Discussion).
During the study, each participant was asked to write supportive, empathic responses to a unique set of
10 existing seeker posts (one at a time) that were sourced at random from a subset of TalkLife posts;
we filtered out harm-related content, such as suicidal ideation or self-harm) to ensure participant safety
(Methods; Discussion). While writing responses, participants in the Human + AI (treatment) group
received feedback via HAILEY (Figure 1b, 1c). Participants in the Human Only (control) group, on
the other hand, wrote responses but received no feedback, reflecting the current status quo on online
peer-to-peer support platforms (Figure 1a). After completing responses to the 10 posts, participants were
asked to assess HAILEY by answering questions about the challenges they experienced while writing
responses and the effectiveness of our approach.

Our primary hypothesis was that Human-AI collaboration would lead to more empathic responses,
i.e., responses in the Human + AI (treatment) group would show higher empathy than the Human Only
(control) group responses. We evaluated this hypothesis using both human and automatic evaluation,
which helped us capture platform users’ perceptions and provided a theory-based assessment of empathy
in the collected responses respectively (Methods). Note that due to the sensitive mental health context
and for reasons of safety, our evaluation of empathy was only based on empathy that was expressed in
responses and not the empathy that might have been perceived by the support seeker of the original seeker
post57. Psychotherapy research indicates a strong correlation between expressed empathy and positive
therapeutic outcomes and commonly uses it as a credible alternative25 (Methods; Discussion).

We conducted multiple post hoc evaluations to assess whether the participants who self-reported chal-
lenges in writing supportive responses could benefit more from our system, to investigate the differences
in how participants collaborated with the AI, and to assess the participants’ perceptions of our approach.
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Results
Increase In Expressed Empathy Due To Human-AI Collaboration
Our primary finding is that providing just-in-time AI feedback to participants leads to more empathic
responses (Figure 2). Specifically, through human evaluation from an independent set of TalkLife users
(Methods), we found that the Human + AI responses were rated as being more empathic than the Human
Only responses 46.8% of the time and were rated equivalent in empathy to Human Only responses 15.7%
of the time. On the other hand, Human Only responses were preferred only 37.4% of the time (p < 0.01;
t = 5.88; D f = 2998; Two-sided Student’s t-test; Figure 2a). In addition, by automatically estimating
empathy levels of responses using a previously validated empathy classification model on a scale from 0 to
6 (Methods), we found that the Human + AI approach led to 19.6% higher empathic responses compared
to the Human Only approach (1.77 vs. 1.48; Cohen’s d = 0.24; p < 10−5; t = 5.46; D f = 2998; Two-sided
Student’s t-test; Figure 2b).

Higher Gains For Those Who Report Peer-support Challenges
Prior work has shown that online peer supporters find it extremely challenging to write supportive and
empathic responses29, 38, 39. Some participants have little to no prior experience with peer support (e.g., if
they are new to the platform; N=95/300; Methods). Even as the participants gain more experience, in the
absence of explicit training or feedback, the challenge of writing supportive responses persists over time
and may even lead to a gradual decrease in empathy levels due to factors such as empathy fatigue40–44,
as also observed during the course of our 30-minute study (Supplementary Figure S6). Therefore, it is
particularly important to better assist the many participants who struggle with writing responses.

For the subsample of participants who self-reported challenges in writing responses at the end of our
study (N=91/300; Methods), a post hoc analysis revealed significantly higher empathy gains using the
Human-AI collaboration approach. For such participants, we found an absolute 4.5% stronger preference
for the Human + AI responses (49.1% vs. 44.6%; p < 0.01; t = 4.05; D f = 718; Two-sided Student’s
t-test; Figure 2c) and a 27.0% higher increase in expressed empathy using the Human + AI approach
(38.8% vs. 11.8%; p < 10−5; t = 5.90; D f = 1818; Two-sided Student’s t-test; Figure 2d) compared to
participants who did not report any challenges. For the subsample of participants who self-reported no
previous experience with online peer support at the start of our study (N=95/300; 37 of these participants
also self-reported challenges), we found a 8.1% stronger preference for the Human + AI responses (51.8%
vs. 43.7%; p < 0.01; t = 4.42; D f = 758; Two-sided Student’s t-test;) and a 21.2% higher increase in
expressed empathy using the Human + AI approach (33.7% vs. 12.5%; p < 10−5; t = 4.58; D f = 1898;
Two-sided Student’s t-test; Supplementary Figure S11d) compared to participants who reported experience
with online peer support.

Key Human-AI Collaboration Patterns
The collaboration between humans and AI can take many forms but specific formulations of human-AI
collaboration remain poorly defined and challenging to measure11. Investigating how humans collaborate
with our AI can help us better understand the system’s use-cases and inform better design decisions. Here,
we analyzed collaboration patterns of participants both over the course of the study as well as during
a single response instance. We leveraged this analysis to derive a hierarchical taxonomy of Human-AI
collaboration patterns based on how often the AI was consulted during the study and how AI suggestions
were used (Figure 3a; Methods).

Our analysis revealed several categories of collaboration. For example, some participants chose to
always rely on the AI feedback, whereas others only utilized it as a source of inspiration and rewrote it in
their own style. Based on the number of posts in the study for which AI was consulted (out of the 10 posts
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Figure 2. (a) Human evaluation from an independent set of TalkLife users showed that the Human + AI responses
(N=139) were strictly preferred 46.9% of the time relative to a 37.4% strict preference for the Human Only
responses (N=161). (b) Through automatic evaluation using an AI-based expressed empathy score29, we found that
the Human + AI responses (N=139) had 19.6% higher empathy than the Human Only responses (N=161; 1.77 vs.
1.48; Cohen’s d=0.24; p=5.1∗ e−8; t = 5.46; D f = 2998; Two-sided Student’s t-test). (c) For the participants who
reported challenges in writing responses after the study, we found a stronger preference for the Human + AI
responses vs. Human Only responses (49.1% vs. 34.0%), compared to participants who did not report challenges
(44.6% vs. 41.5%). (d) For participants who reported challenges in writing responses after the study, we found a
higher improvement in expressed empathy scores of the Human + AI responses vs. Human Only responses (38.9%;
1.74 vs. 1.25; Cohen’s d=0.43), compared to participants who did not report challenges (11.9%; 1.79 vs. 1.60;
Cohen’s d=0.15). In c and d, the sample size varied to ensure comparable conditions (Methods). The point estimates
represent the mean and the error bars represent bootstrapped 95% confidence intervals.

Human Evaluation:
Which response is more empathic?

Automatic/AI-based Evaluation:
Expressed empathy score

(a) (b)

(c) (d)
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for each participant), we found that participants consulted AI either always (15.5%), often (56.0%), once
(6.0%), or never (22.4%). Very few participants always consulted and used the AI (2.6%), indicating that
they did not rely excessively on AI feedback. A substantial number of participants also chose to never
consult the AI (22.4%). Such participants, however, also expressed the least empathy in their responses
(1.13 on average out of 6; Figure 3b), suggesting that consulting the AI could have been beneficial.

Furthermore, based on how AI suggestions were used, we found that participants used the suggestions
either directly (64.6%), indirectly (18.5%), or not at all (16.9%). As expected given our system’s design,
the most common way of usage was direct, which entailed clicking on the suggested actions to incorporate
them in the response. In contrast, participants who indirectly used AI (Methods) drew ideas from the
suggested feedback and rewrote it in their own words in the final response. Some participants, however,
chose not to use suggestions at all (16.9%); a review of these instances by the researchers, as well as the
subjective feedback from participants, suggested that reasons included the feedback not being helpful,
the feedback not being personalized, or their response already being empathic and leaving little room
for improvement. Finally, multiple types of feedback are possible for the same combination of seeker
post and original response, and some participants (16.9%) used our reload functionality (Methods) to read
through these multiple suggestions before they selected a final response.

In general, participants who consulted and used AI more often expressed higher empathy, though this
pattern was more pronounced when evaluated through our automatic expressed empathy score (Figure 3c)
than through human evaluation (Figure 3b).

Positive Perceptions Of Participants
At the end of our study, we collected study participants’ perceptions about the usefulness and actionability
of the feedback and their intention to adopt the system. We observed that 63.3% of participants found
the feedback they received helpful, 60.4% found it actionable, and 77.7% of participants wanted this
type of feedback system to be deployed on TalkLife or other similar peer-to-peer support platforms
(Supplementary Figure S3), indicating the overall effectiveness of our approach. We also found that 69.8%
of participants self-reported feeling more confident at providing support after our study; this indicates the
potential value of our system for training and increased self-efficacy (Supplementary Figure S3).

Discussion
Our work demonstrates how humans and AI might collaborate on open-ended, social, and high-stakes
tasks such as conducting empathic conversations. Empathy is complex and nuanced30–33 and is thus more
challenging for AI than many other Human-AI collaboration tasks, such as scheduling meetings, therapy
appointments and checking grammar in text. We show how the joint effects of humans and AI can be
leveraged to help peer supporters, especially those who have difficulty providing support, converse more
empathically with those seeking mental health support.

Our study has implications for addressing barriers to mental health care, where existing resources
and interventions are insufficient to meet the current and emerging need. According to a WHO report,
over 400 million people globally suffer from a mental health disorder, with approximately 300 million
suffering from depression34. Overall, mental illness and related behavioral health problems contribute
13% to the global burden of disease, more than both cardiovascular diseases and cancer58. Although
psychotherapy and social support59 can be effective treatments, many vulnerable individuals have limited
access to therapy and counseling35, 36. For example, most countries have less than one psychiatrist per
100,000 individuals, indicating widespread shortages of workforce and inadequate in-person treatment
options60.
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Figure 3. We derived a hierarchical taxonomy of Human-AI collaboration categories. (a) We clustered the
interaction patterns of Human + AI (treatment) participants based on how often the AI was consulted during the
study and how the AI suggestions were used (N=116/139). We excluded participants who belonged to multiple
clusters (N=23/139). Very few participants always consulted and used AI (2.6%), indicating that participants did not
rely excessively on AI feedback. Participants could use AI feedback directly through suggested actions (64.6%) or
indirectly by drawing ideas from the suggested feedback and rewriting it in their own words in the final response
(18.5%). (b) Empathy increased when participants consulted and used AI more frequently, with those who did not
consult AI (22.4%) or did not use AI (9.5%) having significantly lower preference over Human Only responses
(N=37; p = 6.4∗ e−6; Two-sided Student’s t-test). (c) Participants who did not consult AI had the lowest empathy
levels based on our automatic evaluation (1.13 on average out of 6). The area of the points is proportional to the
number of participants in the respective human-AI collaboration categories. The point estimates represent the mean
and the error bars represent bootstrapped 95% confidence intervals.
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A scalable approach to improving access to mental health support globally is by connecting support
seekers and peer supporters using online platforms like TalkLife (talklife.com), YourDost (yourdost.com)
or Mental Health Subreddits (reddit.com)37 to those with mental health issues. However, a key challenge
in doing so lies in enabling effective and high-quality conversations between untrained peer supporters and
those in need at scale. We show that Human-AI collaboration can considerably increase empathy in peer
supporter responses, a core component of effective and quality support that ensures improved feelings
of understanding and acceptance25, 27–29. While fully replacing humans with AI for empathic care has
previously drawn skepticism from psychotherapists31, 32, our results suggest that it is feasible to empower
untrained peer supporters with appropriate AI-assisted technologies in relatively lower-risk settings, such
as peer-to-peer support35, 45, 46, 61, 62.

Our findings also point to potential secondary gain for peer supporters in terms of (1) increased self-
efficacy, as indicated by 69.8% of participants feeling more confident in providing support after the study,
and (2) gained experience and expertise by multiple example learning when using reload functionality
to scroll through multiple types of responses for the same seeker post. This has implications for helping
untrained peer supporters beyond providing them just-in-time feedback. One criticism of AI is that it may
steal or dampen opportunities for training more clinicians and workforce31, 32. We show that Human-AI
collaboration can actually enhance, rather than diminish, these training opportunities. This is also reflected
in the subjective feedback from participants (Methods), with several participants reporting different types
of learning after interacting with the AI (e.g., one participant wrote, “I realized that sometimes I directly
jump on to suggestions rather than being empathic first. I will have to work on it.”, while another wrote,
“Feedback in general is helpful. It promotes improvement and growth.”).

Further, we find that participants not only directly accept suggestions but also draw higher-level
inspiration from the suggested feedback (e.g., a participant wrote “Sometimes it just gave me direction on
what [should] be said and I was able to word it my way. Other times it helped add things that made it
sound more empathic...”), akin to having access to a therapist’s internal brainstorming, which participants
can use to rewrite responses in their own style.

In our study, many participants (N=91) reported challenges in writing responses (e.g., several partici-
pants reported not knowing what to say: “I sometimes have a hard time knowing what to say.”), which
is characteristic of the average user on online peer-to-peer support platforms29, 38, 39. We demonstrate a
significantly larger improvement in empathy for these users, suggesting that we can provide significant
assistance in writing more empathic responses, thereby improving empathy awareness and expression of
the typical platform user29, 47. Through qualitative analysis of such participants’ subjective feedback on
our study, we find that HAILEY can guide someone who is unsure about what to say (e.g., a participant
wrote, “Feedback gave me a point to start my own response when I didn’t know how to start.”) and
can help them frame better responses (e.g., one participant wrote, “Sometimes I didn’t really knew [sic]
how to form the sentence but the feedback helped me out with how I should incorporate the words.”,
while another wrote, “Sometimes I do not sound how I want to and so this feedback has helped me on
sounding more friendly...”; Methods). One concern is that AI, if used in practice, may cause harm to
multiple stakeholders from support seekers to care providers and peer supporters, through inappropriate
interventions, role confusion, and data sharing concerns31, 32, 63. According to our findings, however, the
individuals struggling to do a good job are the ones who benefit the most, which forms an important use
case of AI in healthcare.

The reported differences in empathy between treatment and control groups conservatively estimates the
impact of our AI-in-the-loop feedback system due to (1) additional initial empathy training to both Human
+ AI and Human Only groups (Supplementary Figure S1), and (2) a potential selection effect that may have
attracted TalkLife users who care more about supporting others (Supplementary Figure S7). In practice,
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training of peer supporters is very rare, and the effect of training typically diminishes over time42, 43.
We included this training to understand whether just-in-time AI feedback is helpful beyond traditional
training methods. Moreover, the Human Only responses in our study had 34.5% higher expressed empathy
than existing Human Only responses to the corresponding seeker posts on the TalkLife platform (1.11 vs.
1.48; p ≪ 10−5; Two-sided Student’s t-test; Supplementary Figure S7), reflecting the effects of additional
training as well as a potential selection effect. We show here that Human-AI collaboration improves
empathy expression even for participants who already express empathy more often; practical gains for the
average user of the TalkLife platform could be even higher than the intentionally conservative estimates
presented here.

Safety, Privacy, And Ethics
Developing computational methods for intervention in high-stakes settings such as mental health care
involves ethical considerations related to safety, privacy, and bias13, 64–66. There is a risk that in attempting
to help, AI may have the opposite effect on the potentially vulnerable support seeker or peer supporter63.
The present study included several measures to reduce such risks and unintended consequences. First, our
collaborative, AI-in-the-loop writing approach ensured that the primary conversation remains between
two humans, with AI offering feedback only when it appears useful, and allowing the human supporter
to accept or reject it. Providing such human agency is safer than relying solely on AI, especially in a
high-stakes mental health context46. Moreover, using only AI results in loss of authenticity in responses;
hence, our Human-AI collaboration approach leads to responses with high empathy as well as high
authenticity (Supplementary Figure S2).

Second, our approach intentionally assists only peer supporters, not support seekers in crisis, since
they are likely to be at a lower risk and more receptive to the feedback. Third, we filtered posts related
to suicidal ideation and self-harm by using pre-defined unsafe regular expressions (e.g., “.*(commit
suicide).*”, “.*(cut).*”). Such posts did not enter our feedback pipeline, but instead we recommended
escalating them to therapists. We applied the same filtering to every generated feedback, as well, to try and
ensure that HAILEY did not suggest unsafe text as responses. Fourth, such automated filtering may not be
perfect; therefore, we included a mechanism to flag inappropriate/unsafe posts and feedback by providing
our participants with an explicit “Flag Button” (Supplementary Figure S31). In our study, 1.6% posts
(out of 1390 in the treatment group) and 2.9% feedback instances (out of 1939 requests) were flagged as
inappropriate or unsafe. While the majority of them were concerned with unclear seeker posts or irrelevant
feedback, we found six cases (0.2%) that warranted further attention. One of these cases involved the post
containing intentionally misspelled self-harm content (e.g., “c u t” with spaces between letters in order to
circumvent safety filters); another related to feedback containing a self-harm related term; three addressed
the post or feedback containing a swear word that may not directly be a safety concern (e.g., “You are so
f**king adorable”); and one contained toxic/offensive feedback (“It’s a bad face”).

Future iterations of our system could address these issues by leveraging more robust filtering methods
and toxicity/hate speech classifiers (e.g., Perspective API (perspectiveapi.com)). Several platforms,
including TalkLife, already have systems in place to prevent triggering content from being shown,
which can be integrated into our system on deployment. Finally, we removed all personally identifiable
information (user and platform identifiers) from the TalkLife dataset prior to training the AI model.

Limitations
While our study results reveal the promise of Human-AI collaboration in open-ended and even high-stakes
settings, the study is not without limitations. Some of our participants indicated that empathy may not
always be the most helpful way to respond (e.g., when support seekers are looking for concrete actions).
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However, as demonstrated repeatedly in the clinical psychology literature25, 27–29, empathy is a critical,
foundational approach to all evidence-based mental health support, plays an important role in building
alliance and relationship between people, and is highly correlated with symptom improvement. It has
consistently proven to be an important aspect of responding, but support seekers may sometimes benefit
from additional responses involving different interventions (e.g., concrete problem solving, motivational
interviewing67). Future work should investigate when such additional responses are helpful or necessary.

Some participants may have been apprehensive about using our system, as indicated by the fact that
many participants did not consult or use it (N=37). Qualitatively analyzing the subjective feedback from
these participants suggested that this might be due to feedback communicating incorrect assumptions
about the preferences, experience, and background of participants (e.g., assuming that a participant is
dealing with the same issues as the support seeker: “Not sure this can be avoided, but the feedback would
consistently assume I’ve been through the same thing.”). Future work should personalize prompts and
feedback to individual participants. This could include personalizing the content and the frequency of
the prompt as well as personalizing the type of feedback that is shown from multiple possible feedback
options.

Our assessment includes validated yet automated and imperfect measures. Specifically, our evaluation
of empathy is based only on empathy that was expressed in responses, not empathy that might have
been perceived by the support seeker57. In sensitive contexts like ours, however, obtaining perceived
empathy ratings from support seekers is challenging and involves ethical risks (Safety, Privacy, and
Ethics). We attempted to reduce the gap between expressed and perceived empathy in our human
evaluation by recruiting participants from TalkLife who may be seeking support on the platform (Methods).
Nevertheless, studying the effects of Human-AI collaboration on perceived empathy in conversations is a
vital future research direction. However, note that psychotherapy research indicates a strong correlation
between expressed empathy and positive therapeutic outcomes and commonly uses it as a credible
alternative25, 27–29.

Furthermore, we acknowledge that a variety of social and cultural factors might affect the dynamics of
the support and the expression of empathy68–70. As such, our Human-AI collaboration approach must be
adapted and evaluated in various socio-cultural contexts, including underrepresented communities and
minorities. While conducting randomized controlled trials on specific communities and investigating
heterogeneous treatment effects across demographic groups is beyond the scope of our work, our study was
deployed globally and included participants of various gender identities, ethnicities, ages, and countries
(Methods; Supplementary Figure S10, S11). However, this is a critical area of research, and ensuring
equitable access to culturally sensitive empathic support requires further investigation.

Our study evaluated a single Human-AI collaboration interface design, and there could have been other
potential interface designs, as well. Additionally, as a secondary exploration, we analyzed a classification-
based interface design, which provided participants with the option to request automatic expressed empathy
scores29 for their responses (Supplementary Figure S5). We assigned this secondary classification-based
AI treatment to 10% of the incoming participants at random (N=30). Due to conflicting human and
automatic evaluation results, we observed that the effects of this secondary treatment on empathy of
participants were ambiguous (Supplementary Figure S4a, S4b); however, the design was perceived as
being less actionable than our primary rewriting-based interface (Supplementary Figure S4c). This poses
questions on what types of design are optimal and how best to provide feedback.

Finally, we recruited participants from a single platform (TalkLife) and only for providing empathic
support in the English language. We further note that this study focuses on empathy expression in peer
support and does not investigate long-term clinical outcomes.
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Conclusion
We developed and evaluated HAILEY, a Human-AI collaboration system that led to a 19.6% increase in
empathy in peer-to-peer conversations overall (Cohen’s d = 0.24) and a 38.9% increase in empathy for
mental health supporters who experience difficulty in writing responses (Cohen’s d = 0.43) in a randomized
controlled trial on a large peer-to-peer mental health platform. Our findings demonstrate the potential of
feedback-driven, AI-in-the-loop writing systems to empower online peer supporters to improve the quality
of their responses without increasing the risk of harmful responses.

Methods
Study Design
We employed a between-subjects study design in which each participant was randomly assigned to one of
Human + AI (treatment; N=139) or Human Only (control; N=161) conditions. Participants in both groups
were asked to write supportive, empathic responses to a unique set of 10 existing seeker posts (one at a
time), sourced at random from a subset of TalkLife posts. The Human + AI (treatment) group participants
were given the option of receiving feedback through prompts as they typed their responses. Participants in
the Human Only (control) group, in contrast, wrote responses with no option for feedback.

TalkLife Platform. Founded in 2012, TalkLife (talklife.com/about) is the largest global peer-to-peer
support platform for mental health. It enables people in distress to interact with other peers on the platform.
Users typically access this platform through a smartphone application though a web interface is available
as well. The interactions typically occur through conversational threads which is the focus of our study. A
conversational thread on TalkLife is characterized by a user initially authoring a post seeking support (e.g.,
My job is becoming more and more stressful with each passing day); the post then receives responses from
the peers on the platform, sometimes leading to back-and-forth conversations between the users.

Participant Recruitment. We worked with TalkLife to recruit participants directly from their platform.
Because users on such platforms are typically untrained in best-practices of providing mental health
support, their work offers a natural place to deploy feedback systems like ours. To recruit participants, we
advertised our study on TalkLife. Recruitment started in April 2021 and continued until September 2021.
The study was approved by the University of Washington’s Institutional Review Board (determined to be
exempt; IRB ID STUDY00012706).

Power Analysis. We used a power analysis to estimate the number of participants required for our
study. For an effect size of 0.1 difference in empathy, a power analysis with a significance level of 0.05,
powered at 80%, indicated that we required 1,500 samples of (seeker post, response post) pairs each for
treatment and control groups. To meet the required sample size, we collected 10 samples per participant
and therefore recruited from 300 participants in total (with the goal of 150 participants per condition), for
a total of 1,500 samples each.

Dataset of Seeker Posts. We obtained a unique set of 1500 seeker posts, sampled at random with consent
from the TalkLife platform, in the observation period from May 2012 to June 2020. Prior to sampling, we
filtered posts related to (1) critical settings of suicidal ideation and self-harm, using pre-defined unsafe
regular expressions (e.g., “.*(commit suicide).*”, “.*(cut).*”), to ensure participant safety (Discussion),
and (2) common social media interactions not related to mental health (e.g., “Happy mother’s day”) using a
standard BERT-based text classifier71, trained on a manually annotated dataset of ∼3k posts with answers
to the question “Is the seeker talking about a mental health related issue or situation in his/her post?”
(∼ 85% accuracy)47. We randomly divided these 1500 posts into 150 subsets of 10 posts each. We used
the same 150 subsets for both treatment and control conditions for consistent context for both groups of
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participants.

Participant Demographics. In our study, 54.3% of the participants identified as female, 36.7% as
male, 7.3% as non-binary, and the remaining 1.7% preferred not to report their gender. The average
age of participants was 26.3 years (std = 9.5). 45.7% of the participants identified as White, 20.3% as
Asians, 10.7% as Hispanic or Latino, 10.3% as Black or African American, 0.7% as Pacific Islander or
Hawaiian, 0.3% as American Indian or Alaska Native, and the remaining 12.0% preferred not to report
their race/ethnicity. 62.3% of the participants were from the United States, 13.7% were from India, 2.3%
were from United Kingdom, 2.3% were from Germany, and the remaining 19.3% were from 36 different
countries (spanning six of seven continents excluding Antarctica). Moreover, 31.7% of the participants
reported having no experience with peer-to-peer support despite having been recruited from the TalkLife
platform, 26.3% as having less than one year of experience, and 42.0% reported having greater than or
equal to one year of experience with peer-to-peer support.

RCT Group Assignment. On clicking the advertised pop-up used for recruitment, a TalkLife user was
randomly assigned to one of the Human + AI (treatment) or Human Only (control) conditions for the
study duration.

Study Workflow. We divided our study into four phases:

• Phase I: Pre-Intervention Survey. First, both control and treatment group participants were asked
the same set of survey questions describing their demographics, background and experience with
peer-to-peer support (Supplementary Figure S19, S20).

• Phase II: Empathy Training and Instructions. Next, to address whether participants held similar
understandings of empathy, both groups received the same initial empathy training, which included
empathy definitions, frameworks, and examples based on psychology theory, before starting the
main study procedure of writing empathic responses (Supplementary Figure S1). Participants were
also shown instructions on using our study interface in this phase (Supplementary Figure S21, S22,
S23, S24, S25, S26, S27, S28).

• Phase III: Write Supportive, Empathic Responses. Participants then started the main study
procedure and wrote responses to one of the 150 subsets of 10 existing seeker posts (one post at a
time). For each post, participants in both the groups were prompted “Write a supportive, empathic
response here”. The Human + AI (treatment) group participants were given the option of receiving
feedback through prompts as they typed their responses (Supplementary Figure S30). Participants in
the Human Only (control) group wrote responses without any option for feedback (Supplementary
Figure S29).

• Phase IV: Post-Intervention Survey. After completing the 10 posts, participants in both groups
were asked to assess the study by answering questions about the difficulty they faced while writing
responses, the helpfulness and actionability of the feedback, their self-efficacy after the study, and
the intent to adopt the system (Supplementary Figure S32, S33, S34).

If participants dropped out of the study before completing it, their data was removed from our analyses.
Participants took 20.6 minutes on average to complete the study. US citizens and permanent US residents
were compensated with a 5 USD Amazon gift card. Furthermore, the top-2 participants in the human
evaluation (Evaluation) received an additional 25 USD Amazon gift card. Based on local regulations, we
were unable to pay non-US participants. This was explicitly highlighted in the participant consent form on
the first landing page of our study (Supplementary Figure S18, S35).
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Design Goals
HAILEY is designed (1) with a collaborative “AI-in-the-loop” approach, (2) to provide actionable feedback,
and (3) to be mobile friendly.

Collaborative AI-in-the-loop Design. In the high-stakes setting of mental health support, AI is best used
to augment, rather than replace, human skill and knowledge46, 51. Current natural language processing
technology – including language models, conversational AI methods, and chatbots – continue to pose
risks related to toxicity, safety, and bias, which can be life-threatening in contexts of suicidal ideation and
self-harm63, 72–74. To mitigate these risks, researchers have called for Human-AI collaboration methods,
where primary communication remains between two humans with an AI system “in-the-loop” to assist
humans in improving their conversation46, 51. In HAILEY, humans remain at the center of the interaction,
receive suggestions from our AI “in-the-loop,” and retain full control over which suggestions to use in their
responses (e.g., by selectively choosing the most appropriate Insert or Replace suggestions and editing
them as needed).

Actionable Feedback. Current AI-in-the-loop systems are often limited to addressing “what” (rather
than "how") participants should improve52–55. For such a goal, it is generally acceptable to design simple
interfaces that prompt participants to leverage strategies for successful supportive conversations (e.g.,
prompting “you may want to empathize with the user”) without any instructions on how to concretely
apply those strategies. However, for complex, hard-to-learn constructs such as empathy25, 30, there is a
need to address the more actionable goal of steps to take for participants to improve. HAILEY, designed to
be actionable, suggests concrete actions (e.g., sentences to insert or replace) that participants may take to
make their current response more empathic.

Mobile Friendly Design. Online conversations and communication are increasingly mobile based. This is
also true for peer-to-peer support platforms, which generally provide their services through a smartphone
application. Therefore, a mobile friendliness design is critical for the adoption of conversational assistive
agents like ours. However, the challenge here relates to the complex nature of the feedback and the smaller,
lower-resolution screen on a mobile device as compared to a desktop. We therefore designed a compact,
minimal interface that works equally well on desktop and mobile platforms. We created a conversational
experience based on the mobile interface of peer-to-peer support platforms that was design minimal, used
responsive prompts that adjusted in form based on screen sizes, placed AI feedback compactly above the
response text box for easy access, and provided action buttons that were easy for mobile users to click on.

Feedback Workflow
Through HAILEY, we showed prompts to participants that they could click on to receive feedback. Our
feedback, driven by a previously validated Empathic Rewriting model, consists of actions that users can
take to improve the empathy of their responses (Supplementary Figure S30).

Prompts to Trigger Feedback. We showed the prompt “Would you like some help with your response?”
to participants, which was placed above the response text box (Figure 1b). Participants could at any
point click on the prompt to receive feedback on their current response (including when it is still empty).
When this prompt is clicked, HAILEY acts on the seeker post and the current response to suggest changes
that will make the response more empathic. Our suggestions consisted of Insert and Replace operations
generated through empathic rewriting of the response.

Generating Feedback through Empathic Rewriting. The goal of empathic rewriting, originally proposed
in Sharma et al.47, is to transform low empathy text to higher empathy. The authors proposed PARTNER, a
deep reinforcement learning model that learns to take sentence-level edits as actions in order to increase the
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expressed level of empathy while maintaining conversational quality. PARTNER’s learning policy is based
on a transformer language model (adapted from GPT-275), which performs the dual task of generating
candidate empathic sentences and adding those sentences at appropriate positions. PARTNER-generated
rewritings increase empathy by 1.6 (on the 6-point empathy scale), which is >35% more than all state-of-
the-art baseline methods and are judged more empathic over 65% of the time than baselines by human
annotators. Here, we build on PARTNER by further improving training data quality through additional
filtering, supporting multiple generations for the real-world use-case of multiple types of feedback for the
same post, and evaluating a broader range of hyperparameter choices. Source code of PARTNER was taken
from Sharma et al.56.

Showing Feedback as Actions. We map the rewritings generated by our optimized version of PARTNER to
suggestions to Insert and Replace sentences. These suggestions are then shown as actions to edit the
response. To incorporate the suggested changes, the participant clicks on the respective Insert or Replace
buttons. Continuing our example from Figure 1, given the seeker post “My job is becoming more and
more stressful with each passing day.” and the original response “Don’t worry! I’m there for you.”,
PARTNER takes two insert actions – Replace “Don’t worry!” with “It must be a real struggle!” and Insert
“Have you tried talking to your boss?” at the end of the response. These actions are shown as feedback to
the participant. See Supplementary Figure S8 for more qualitative examples.

Reload Feedback If Required. For the same combination of seeker post and original response, multiple
feedback suggestions are possible. In the Figure 1 example, instead of suggesting the insert “Have you
tried talking to your boss?”, we could also propose inserting “I know how difficult things can be at work”.
These feedback variations can be sampled from our model and, if the initial sampled feedback does not
meet participant needs, iterated upon to help participants find better-suited feedback. HAILEY provides an
option to reload feedback, allowing participants to navigate through different feedback and suggestions if
necessary.

Evaluation

Empathy Measurement. We evaluated empathy using both human and automated methods. For our
human evaluation, we recruited an independent set of participants from the TalkLife platform and asked
them to compare responses written with feedback to those written without feedback given the same
seeker post (Supplementary Figure S35, S36, S37). We found that the participant annotations have a
Cohen’s Kappa score of 0.55 (N=150 pair of responses; note that Cohen’s Kappa controls for agreement by
chance). We found this score to be comparable to the inter-annotator agreement for complex therapeutic
constructs annotations29, 76. When analyzing strata of participants based on challenges in writing responses
(Figure 1c), we considered only those seeker post instances for which the respective Human Only and
Human + AI participants both indicated writing as challenging or not challenging. Since our human
evaluation involves comparing Human Only and Human + AI responses, this ensures that participants in
each strata belong to only one of challenging or not challenging categories.

Though our human evaluation captures platform users’ perceptions of empathy in responses, it is
unlikely to measure empathy from the perspective of psychology theory given the limited training of
TalkLife users. Therefore, we conducted a second complementary evaluation by applying the theory-based
empathy classification model proposed by Sharma et al.29, which assigns a score between 0 and 6 to
each response and has been validated and used in prior work47, 77–79. Note that this approach evaluates
empathy expressed in responses and not the empathy perceived by support seekers of the original seeker
post (Discussion).
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Hierarchical Taxonomy Of Human-AI Collaboration Patterns
We wanted to understand how different participants collaborated with HAILEY. To derive collaboration
patterns at the participant level, we aggregated and clustered post-level interactions for each participant
over the 10 posts in our study. First, we identified three dimensions of interest that were based on the
design and features of HAILEY as well as by qualitatively analyzing the interaction data: (1) the number of
posts in the study for which the AI was consulted, (2) the way in which AI suggestions were used (direct
vs. indirect vs. not at all), and (3) whether the participant looked for additional suggestions for a single
post (using the reload functionality).

Direct use of AI was defined as directly accepting the AI’s suggestions by clicking on the respective
Insert or Replace buttons. Indirect use of AI, in contrast, was defined as making changes to the response
by drawing ideas from the suggested edits. We operationalized indirect use as a cosine similarity of more
than 95% between the BERT-based embeddings71 of the final changes to the response by the participant
and the edits suggested by the AI. Next, we used k-means to cluster the interaction data of all participants
on the above dimensions (k=20 based on the Elbow method80). We manually analyzed the distribution of
the 20 inferred clusters, merged similar clusters, discarded the clusters that were noisy (e.g., too small or
having no consistent interaction behavior), and organized the remaining 8 clusters in a top-down approach
to derive the hierarchical taxonomy of Human-AI collaboration patterns (Figure 3a; Results). Finally, for
the collaboration patterns with simple rule-based definitions (e.g., participants who never consulted AI),
we manually corrected the automatically inferred cluster boundaries to make the patterns more precise,
e.g., by keeping only the participants who had never consulted AI in that cluster.

We note that conditioning on the collaboration patterns, as in Figures 3bc, may introduce selection
effects, as the type of collaboration was not randomly assigned. For example, participants that never used
feedback suggestions may have been less engaged with the study and task overall.

Data availability
Data used for training the empathy classification model used for automatic evaluation is available at
https://github.com/behavioral-data/Empathy-Mental-Health29, 81. Data used for training PARTNER and the
data collected in our randomized controlled trial are available on request from the corresponding author
with a clear justification and a license agreement from TalkLife.

Code availability
Source code of the empathy classification model used for automatic evaluation is available at
https://github.com/behavioral-data/Empathy-Mental-Health29, 81. Source code of PARTNER is available at
https://github.com/behavioral-data/PARTNER47, 56. Code used for designing the interface of HAILEY is
available at https://github.com/behavioral-data/Human-AI-Collaboration-Empathy82. Code used for the
analysis of the study data is available on request from the corresponding author. For the most recent
project outcomes and resources, please visit https://bdata.uw.edu/empathy.
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Figure Captions

Figure 1. We performed a randomized controlled trial with 300 TalkLife peer supporters as participants.
We randomly divided participants into Human Only (control) and Human + AI (treatment) groups and
asked them to write supportive, empathic responses to seeker posts without feedback and with feedback,
respectively. To identify whether just-in-time Human-AI collaboration helped increase expressed empathy
beyond potential (but rare) traditional training methods, participants in both groups received initial empathy
training before starting the study (Methods; Supplementary Figure S1). (a) Without AI, human peer
supporters are presented with an empty chatbox to author their response (the current status quo). As peer
supporters are typically untrained on best-practices in therapy – such as empathy – they rarely conduct
highly empathic conversations. (b) Our feedback agent (HAILEY) prompts peer supporters for providing
just-in-time AI feedback as they write their responses. (c) HAILEY then suggests changes that can be made
to the response to make it more empathic. These suggestions include new sentences that can be inserted
and options for replacing current sentences with their more empathic counterparts. Participants can accept
these suggestions by clicking on the Insert and Replace buttons and continue editing the response or get
more feedback, if needed.

Figure 2. (a) Human evaluation from an independent set of TalkLife users showed that the Human + AI
responses (N=139) were strictly preferred 46.9% of the time relative to a 37.4% strict preference for the
Human Only responses (N=161). (b) Through automatic evaluation using an AI-based expressed empathy
score29, we found that the Human + AI responses (N=139) had 19.6% higher empathy than the Human
Only responses (N=161; 1.77 vs. 1.48; Cohen’s d=0.24; p=5.1∗10−8; t = 5.46; D f = 2998; Two-sided
Student’s t-test). (c) For the participants who reported challenges in writing responses after the study, we
found a stronger preference for the Human + AI responses vs. Human Only responses (49.1% vs. 34.0%),
compared to participants who did not report challenges (44.6% vs. 41.5%). (d) For participants who
reported challenges in writing responses after the study, we found a higher improvement in expressed
empathy scores of the Human + AI responses vs. Human Only responses (38.9%; 1.74 vs. 1.25; Cohen’s
d=0.43), compared to participants who did not report challenges (11.9%; 1.79 vs. 1.60; Cohen’s d=0.15).
In c and d, the sample size varied to ensure comparable conditions (Methods). Data are presented as mean
values ± 1.96∗SEM (bootstrapped 95% confidence intervals).
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Figure 3. We derived a hierarchical taxonomy of Human-AI collaboration categories. (a) We clustered
the interaction patterns of Human + AI (treatment) participants based on how often the AI was consulted
during the study and how the AI suggestions were used (N=116/139). We excluded participants who
belonged to multiple clusters (N=23/139). Very few participants always consulted and used AI (2.6%),
indicating that participants did not rely excessively on AI feedback. Participants could use AI feedback
directly through suggested actions (64.6%) or indirectly by drawing ideas from the suggested feedback
and rewriting it in their own words in the final response (18.5%). (b) Empathy increased when participants
consulted and used AI more frequently, with those who did not consult AI (22.4%) or did not use AI (9.5%)
having significantly lower preference over Human Only responses (N=37; p = 6.4 ∗ 10−6; Two-sided
Student’s t-test). (c) Participants who did not consult AI had the lowest empathy levels based on our
automatic evaluation (1.13 on average out of 6). The area of the points is proportional to the number of
participants in the respective human-AI collaboration categories. Data are presented as mean values ±
1.96∗SEM (bootstrapped 95% confidence intervals).
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Table S1. Description of our randomized controlled trial (RCT) study population, setting and model,
following reporting standards for artificial intelligence in health care from Hernandez-Boussard et al.83

Feature Description

Study population and setting
- Population: 300 TalkLife users; 161 in Human Only (control); 139 in Human + AI (treatment).
- Study setting: Non-clinical, online platform outside of TalkLife to ensure platform users’ safety,

through an interface similar to TalkLife’s chat feature.
- Data collected in
RCT:

Participants responded to 10*300=3000 seeker posts (1500 unique seeker posts
duplicated across control and treatment), generating 3000 responses (1610 in
control, 1390 in treatment). An independent set of 50 participants rated 1390 pairs
of control and treatment responses on empathy preference.

- Cohort selection: Participants were sent a recruitment request after they submitted a response on the
TalkLife platform, with an aim of targeting active peer supporters. Participants
were excluded if they dropped out of the study before completion.

- Registration: We did not pre-register on ClinicalTrials.gov because our study was conducted in a
non-clinical setting.

Participant demographic characteristics
- Age: Mean=26.3 years; Std=9.5 years
- Gender: Female: 54.3%; Male: 36.7%; Non-binary: 7.3%; Preferred not to say: 1.7%
- Race/Ethnicity: White: 45.7%; Asian: 20.3%; Hispanic or Latino: 10.7%; Black or African

American: 10.3%; Pacific Islander or Hawaiian: 0.7%; American Indian or Alaska
Native: 0.3%; Preferred not to say: 12.0%

HAILEY’s modeling components
- Model output: Empathic rewriting of the response post
- Target user: Peer supporter (users who provide peer-to-peer support to the support seeker)
- Data splitting: Training: 3.2M; Test: 0.1M; Validation: 0.1M (seeker post, response post) pairs
- Gold standard: 180 empathic rewritings from human therapy experts used for evaluation of the

original PARTNER model47.
- Model task: Text generation
- Model architecture: Deep reinforcement learning with a transformer based language model as its policy.
- Optimization: Based on reward functions to increase empathy in posts and maintain text fluency,

sentence coherence, context specificity, and diversity.
- Internal validation: Automatic and human evaluation on hold-out test set.
- External validation: The empathy scale used in HAILEY and PARTNER47 has previously been shown

to correlate with “likes” from the support seeker and the forming of relationships
b/w support seekers and peer supporters29, consistent with empathy theory25, 27, 28.
Our present randomized controlled trial represents an external evaluation of the
rewriting modeling components of HAILEY and PARTNER47.

- Transparency: Data is available from TalkLife through a Data License Agreement; code is avail-
able via GitHub (github.com/behavioral-data/PARTNER).
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Figure S1. Empathy training used in our study. Participants in both the Human + AI (treatment) and Human Only
(control) groups received the same training. The training included the empathy definition, a framework of common
ways of expressing empathy in responses, and examples of empathic responses. This ensures that participants were
working under similar understandings of empathy. In practice, such training is very rare and the effect of training
typically diminishes over time. The identified difference in empathy between treatment and control groups in our
study therefore conservatively estimates the impact of our AI-in-the-loop feedback system, and not baseline
differences in empathy definitions. The effect in practice may be larger than the intentionally conservative estimates
produced here, as such training is uncommon on current mental health platforms.

Expressing empathy in responses

A key component of your responses should be empathy -- You should try and express empathy towards the seeker in

your responses.

Empathy

Empathy is the ability to understand or feel the emotions and experiences of others and express that understanding in

responses.

We adopt the widely-popular Roger's (1980) definition of empathy which highlights both perspective-taking processes

and the bodily-based emotional simulation processes of empathy:

"[Empathy is] the therapistʼs sensitive ability and willingness to understand the clientʼs thoughts, feelings

and struggles from the clientʼs point of view (p. 85).... "It means entering the private perceptual world of the

other...being sensitive, moment by moment, to the changing felt meanings which flow in this other person... It

means sensing meanings of which he or she is scarcely aware." (Elliot et al.)

Empathic Responses

Since the focus here is on writing empathic responses, expressing empathy in responses is key. Empathic responses

typically involve:

Reacting with emotions felt after reading a post (e.g., I feel sorry for you)

Communicating an understanding of feelings and experiences (e.g., This must be terrifying)

Improving understanding by exploring feelings and experiences (e.g., Are you feeling alone right now?)

Examples of empathic responses

Seeker Post: My whole family hates me.

Response Post: I'm sorry to hear about your situation. If that happened to me, I would feel really isolated.

Seeker Post: I feel like nobody cares about my existence.

Response Post: It s̓ hard to find others who can relate. I feel the same.

Seeker Post: I canʼt deal with this part of my bipolar. I need help.

Response Post: Being manic is no fun. It's scary! Iʼm sorry to hear this is troubling you. Try to relax. Anyone

you can talk to?

We will now start the study!

Start
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Figure S2. Comparison of Human Only (control) and Human + AI (treatment) responses with AI Only responses
(generated directly from PARTNER47, the deep reinforcement learning model for empathic rewriting, used as a
foundation for HAILEY (Methods)). (a) Through human evaluation from an independent set of TalkLife users, we
found that AI Only responses have a similar preference as the Human + AI responses (48.2% vs. 46.9%; N=161;
p=0.23; Two-sided Student’s t-test) but a higher preference than the Human Only responses (48.2% vs. 37.4%;
N=139; p=3.3∗10−5; Two-sided Student’s t-test). (b) Automatic estimation of empathy, on the contrary, suggested
that AI Only responses have a higher expressed empathy score compared to Human + AI responses (2.10 vs. 1.77;
N=139; Cohen’s d=0.28; p=5.3∗10−13; Two-sided Student’s t-test). Importantly however, note that the AI Only
responses were optimized on the same scoring function that we use to automatically estimate empathy, which likely
explains the high scores of the AI Only approach. (c) However, while the authenticity of Human Only and Human +
AI responses was comparable (69.6% vs. 65.4%; N=139; p=0.01; Two-sided Student’s t-test), the authenticity of AI
Only responses was significantly lower (36.5% vs. 65.4%; N=161; p=3.7∗10−8; Two-sided Student’s t-test). This
highlights the key issue of authenticity with using AI Only, alongside safety, privacy, bias and other unintended
consequences in the high-risk setting of mental health. To summarize, we find that Human + AI is the only approach
that leads to both high empathy and high authenticity. The point estimates represent the mean and the error bars
represent bootstrapped 95% confidence intervals.
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Figure S3. Perceptions of Human + AI (treatment) group participants as reported in phase IV (post-intervention
survey). We observed that more than 63.3% of participants found the current feedback helpful, 60.4% found it
actionable and 69.8% of participants self-reported feeling more confident at providing support after our study. Also,
77.7% of participants wanted this type of feedback system to be deployed on TalkLife or other similar peer-to-peer
support platforms, indicating potential opportunities for deployment in real-world.
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Figure S4. Comparison of our rewriting-based AI treatment with a secondary classification-based AI treatment. A
classification-based AI treatment provided participants with an option to request empathy classification scores for
their responses, as opposed to the more granular feedback consisting of concrete suggestions to edit responses in our
primary rewriting-based approach (Supplementary Figure S5). Our hypothesis was that such a treatment should be
less actionable and is likely to lead to less empathic responses than the rewriting-based treatment. In our study, we
assigned a secondary classification-based treatment to 10% of the incoming participants at random (N=30). (a)
Through human evaluation from an independent set of TalkLife users, we found that the Human + Classification
responses have a significantly lower preference than the Human + Rewriting responses (37.9% vs. 47.8%; N=30;
p=0.002; Two-sided Student’s t-test). (b) Automatic estimation of empathy, on the contrary, suggested that the
Human + Classification responses have a higher expressed empathy score compared to Human + Rewriting
responses (2.24 vs. 1.77; N=30; Cohen’s d=0.37; p=4.7∗10−6; Two-sided Student’s t-test). As the same score is
also exposed to participants just-in-time in the classification-based treatment, it may have led participants to be put
particular emphasis on a high expressed empathy score, which participants in the rewriting-based treatment
feedback didn’t have direct access to. (c) We found that less participants in the classification-based treatment group
agree on deploying the system on TalkLife than the rewriting-based treatment (63.3% vs. 77.7%; N=30; p=0.0998;
Two-sided Student’s t-test; Supplementary Figure S3). Also, we observed that more participants in the
classification-based treatment disagree on its actionability than participants in the rewriting-based treatment, but the
difference may not be statistically significant due to the limited power (23.3% vs. 12.2%; N=30; p=0.1154;
Two-sided Student’s t-test). The area of the points in the plots is proportional to the number of participants in the
respective control/treatment conditions. The point estimates represent the mean and the error bars represent
bootstrapped 95% confidence intervals.
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Figure S5. Interface of our classification-based AI treatment (Supplementary Figure S4). (a) Participant is asked to
write a supportive, empathic response and given an option to receive feedback. (b) Participant starts writing the
response. (c) Participant clicks on the “Get Feedback” button to request classification-based feedback. The feedback
consists of classification scores on three empathy communication mechanisms – Emotional Reactions,
Interpretations, and Explorations29. (d) Participant edits the response based on the classification scores, often
improving on the communication mechanisms with low scores and requests “More Feedback” if needed.

(a) (b) (c)

(d)
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Figure S6. Both Human Only (control) and Human + AI (treatment) group participants showed a significant drop
in empathy levels in the last 5 responses of our study. With Human + AI, however, we observed a significantly lower
drop in empathy (5.3% vs. 26.0%; N=139; p=0.0062; Two-sided Student’s t-test). This indicates the effectiveness of
just-in-time AI feedback in alleviating challenges like empathy fatigue, associated with providing mental health
support. The empathy differences between Human Only (N=161) and Human + AI (N=139) responses are
statistically significant for both first 5 and last 5 responses (p=1.1∗10−8; Two-sided Student’s t-test). The point
estimates represent the mean and the error bars represent bootstrapped 95% confidence intervals.
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Figure S7. Comparison of existing Human Only responses on TalkLife with Human Only and Human + AI
responses in our study. Human Only responses on TalkLife had significantly lower preference for empathy (18.4%
vs. 37.4% vs. 46.9%; N=139; p=1.4∗10−6; Two-sided Student’s t-test) and significantly lower expressed empathy
score (1.11 vs. 1.48 vs. 1.77; p=2.8∗10−46; Two-sided Student’s t-test). This difference might be attributed to the
additional initial empathy training provided to participants, as well as a potential selection effect in our study that
may have attracted Talklife users who particularly care about expressing empathy in supporting others. As our study
shows that Human-AI collaboration improves empathy expression even for those participants who already express
empathy more often, practical gains for the average user of the Talklife platform could be even higher. The point
estimates represent the mean and the error bars represent bootstrapped 95% confidence intervals.
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Figure S8. Qualitative examples of just-in-time AI feedback provided to participants by HAILEY. In (b) and (c),
the original peer supporter response was empty. Seeker posts in these examples have been paraphrased for
anonymization.
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(d) (e) (f)
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Figure S9. The distribution of post and response lengths. The seeker posts in our dataset had a mean length of 25.9
words, a standard deviation of 25.3 words and a median of 18.0 words. The response posts collected in our study
had a mean length of 25.9 words, a standard deviation of 34.6 words and a median of 19.0 words. Also, Human + AI
responses (mean = 22.4 words; std = 34.6; median = 19.0) were 28.9% shorter in length compared to Human Only
responses on average (mean = 32.1 words; std = 44.4; median = 21.0; p < 0.001; Two-sided Student’s t-test). In
addition, we found that Human + AI responses had 5.2% higher diversity than the Human Only responses based on
the Distinct-1 metric84, which computes the number of distinct unigrams divided by the total number of tokens
(0.146 vs. 0.139; p = 0.019; Two-sided Wilcoxon signed-rank test).
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Figure S10. Background and demographics of participants in Human Only (control) and Human + AI (treatment)
groups, as reported in phase I (pre-intervention survey).
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Figure S11. Differences between expressed empathy scores of participants in Human Only (control) and Human +
AI (treatment) groups, stratified by demographics of participants and their prior experience with online peer support.
The area of the points is proportional to the number of participants in the respective categories. The point estimates
represent the mean and the error bars represent bootstrapped 95% confidence intervals.
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Figure S12. Perceptions of participants in Human Only (control) and Human + AI (treatment) groups, as reported
in phase I (pre-intervention survey).
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Figure S13. Distribution of participants in Human Only (control) and Human + AI (treatment) groups who report
writing responses as challenging or stressful, as reported in phase IV (post-intervention survey).
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Figure S14. Distribution of participants in the Human Only (control) group who indicate that feedback could have
improved responses, as reported in phase IV (post-intervention survey).
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Figure S15. Perceptions of participants in the Human + AI (treatment) group, as reported in phase IV
(post-intervention survey).
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Figure S16. Expressed empathy levels of responses with perceptions of Human + AI (treatment) group
participants, as reported in phase IV (post-intervention survey). The area of the points is proportional to the number
of participants with respective perceptions. Error bars indicate bootstrapped 95% confidence intervals.
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Figure S17. Participant perceptions, as reported in phase IV (post-intervention survey), with different human-AI
collaboration categories.
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Figure S18. Consent form used in our study.

Disclaimer

Thank you for your interest in our study!

We are researchers at the University of Washington, studying peer-to-peer support platforms.

This study is not being conducted by TalkLife. TalkLife is not responsible for any risks/benefits associated with this study.

As part of this study, we will be collecting (a) textual responses to support seeking posts, and (b) answers to survey
questions describing your background and your assessment of our study. The data from this study will be uploaded to a
secure platform accessible only to the research team. All collected data will be exclusively used for research purposes.
Also, data will only be analyzed in aggregate.

This study has been determined to be exempt from IRB approval under University of Washington IRB ID STUDY00012706. For
concerns or questions, please contact ashshar@cs.washington.edu.

This is not a live conversation with users. Your responses will not be posted on TalkLife or any other online platform.

Your participation in this study is completely voluntary. You are free to release/quit the study at any time. Refusing to be in the
experiment or stopping participation will involve no penalty or loss of benefits to which you are otherwise entitled.

Poor-quality data (e.g., same response to all posts) may be removed without compensation.

If you are a US citizen or a permanent US resident, you will receive an Amazon gift card worth 5 USD after completing this
study.

Consent

 I agree to participate in this study. I also understand that only US citizens or permanent US residents can be compensated.

Yes, I'm a US citizen or a permanent US resident.

No, I'm neither a US citizen nor a permanent US resident.

Prefer not to say.

Accept and Continue
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Figure S19. Form used for collecting demographics and background of participants [phase I: pre-intervention
survey].

Tell us about yourself

Email is only collected for sending gift cards and will

neither be used for analysis nor be stored by us after the

study.
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Next
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Figure S20. Onboarding survey used for collecting perceptions of participants [phase I: pre-intervention survey].

Onboarding Survey

1) I'm confident I can write good, effective, or helpful
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2) I'm confident I can write empathic responses to
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3) Real-time feedback could be helpful in improving

my responses.
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Neutral

Somewhat Disagree

Strongly Disagree

Next
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Figure S21. Instructions shown to the control group participants [phase II: empathy training and instructions].
Continued on the next page (1/2).

Instructions
The study will involve writing textual responses to support seeking posts and answering survey questions. The entire

study is expected to take ~30 minutes.

Content Warning
The study contains posts including but not limited to self-harm and suicidal ideation, which may be disturbing to you. If

you have concerns or questions, please send us an email (ashshar@cs.washington.edu). If you have strong negative

reactions to some of the content, please reach out at crisis text line.

What will you do?
During the main part of the study, you will be shown online mental health posts through which people seek support. We

call them “Seeker Posts” (writers of these posts are called ”Seekers”). For each seeker post, you will be asked to write a

supportive, empathic response.

Also, at various steps, you will be asked survey questions describing your background and your assessment of our

study.

Expressing empathy in responses

A key component of your responses should be empathy -- You should try and express empathy towards the seeker in

your responses.

Empathy

Empathy is the ability to understand or feel the emotions and experiences of others. Empathic responses typically

involve:

Reacting with emotions felt after reading a post (e.g., I feel sorry for you)

Communicating an understanding of feelings and experiences (e.g., This must be terrifying)

Improving understanding by exploring feelings and experiences (e.g., Are you feeling alone right now?)

Examples of empathic responses

Seeker Post: My whole family hates me.

Empathic Response: I'm sorry to hear about your situation. If that happened to me, I would feel really
isolated.

Seeker Post: I feel like nobody cares about my existence.

Empathic Response: It s̓ hard to find others who can relate. I feel the same.

Seeker Post: I canʼt deal with this part of my bipolar. I need help.

Empathic Response: Being manic is no fun. It's scary! Iʼm sorry to hear this is troubling you. Try to relax.
Anyone you can talk to?

Next

45/62



Figure S22. Instructions shown to the control group participants [phase II: empathy training and instructions] (2/2).

Thank you for filling out the survey!

Next, you will write responses to 10 support seeking posts. Here, we will give you an overview of our interface.

The Interface
This is how the main interface will look:

You will read the seeker post and write a supportive, empathic response in the space provided. 

Start Study
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Figure S23. Instructions shown to the treatment group participants [phase II: empathy training and instructions].
Continued on the next page (1/6).

Instructions
The study will involve writing textual responses to support seeking posts and answering survey questions. You will

receive real-time feedback with suggestions on how to improve your response. The entire study is expected to take ~30

minutes.

Content Warning
The study contains posts including but not limited to self-harm and suicidal ideation, which may be disturbing to you. If

you have concerns or questions, please send us an email (ashshar@cs.washington.edu). If you have strong negative

reactions to some of the content, please reach out at crisis text line.

What will you do?
During the main part of the study, you will be shown online mental health posts through which people seek support. We

call them “Seeker Posts” (writers of these posts are called ”Seekers”). For each seeker post, you will be asked to write a

supportive, empathic response. You will get opportunities to receive "help" on your responses. We will suggest you

ways in which you can improve your responses. You are strongly recommended to always check these suggestions

and use them if they make your response more supportive and empathic.

Also, at various steps, you will be asked survey questions describing your background and your assessment of our

study.

Expressing empathy in responses

A key component of your responses should be empathy -- You should try and express empathy towards the seeker in

your responses.

Empathy

Empathy is the ability to understand or feel the emotions and experiences of others. Empathic responses typically

involve:

Reacting with emotions felt after reading a post (e.g., I feel sorry for you)

Communicating an understanding of feelings and experiences (e.g., This must be terrifying)

Improving understanding by exploring feelings and experiences (e.g., Are you feeling alone right now?)

Examples of empathic responses

Seeker Post: My whole family hates me.

Empathic Response: I'm sorry to hear about your situation. If that happened to me, I would feel really
isolated.

Seeker Post: I feel like nobody cares about my existence.

Empathic Response: It s̓ hard to find others who can relate. I feel the same.

Seeker Post: I canʼt deal with this part of my bipolar. I need help.

Empathic Response: Being manic is no fun. It's scary! Iʼm sorry to hear this is troubling you. Try to relax.
Anyone you can talk to?

Next
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Figure S24. Instructions shown to the treatment group participants [phase II: empathy training and instructions].
Continued on the next page (2/6).

Thank you for filling out the survey!

Next, you will write responses to 10 support seeking posts while receiving feedback. We will first give you an overview

of our interface.

The Interface
This is how the main interface will look:

You will read the seeker post and write a supportive, empathic response in the space provided. 

Next (1/4)
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Figure S25. Instructions shown to the treatment group participants [phase II: empathy training and instructions].
Continued on the next page (3/6).

Interface - Receiving feedback via prompts

You will see prompts to receive real-time feedback (as shown below). You can click on the prompts to get help with

your responses.

You are strongly recommended to always check these suggestions and use them if they make your response more

supportive and empathic.

Next (2/4)
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Figure S26. Instructions shown to the treatment group participants [phase II: empathy training and instructions].
Continued on the next page (4/6).

Interface - Insert and Replace Operations

In our feedback, we will suggest text that you can insert or replace in your current response to make it more supportive

and empathic.

Inserting suggested text
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Figure S27. Instructions shown to the treatment group participants [phase II: empathy training and instructions].
Continued on the next page (5/6).

Replacing with suggested text

You can directly incorporate the changes by clicking on Insert and Replace buttons.

Next (3/4)
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Figure S28. Instructions shown to the treatment group participants [phase II: empathy training and instructions]
(6/6).

Interface - Bad feedback

Our feedback will not always be perfect. If the feedback is bad or inappropriate, you may refine, reload, or report the

feedback.

Refine

You may need to refine the feedback to correct grammar or content. You should make relevant changes such that the

feebdack can be appropriately integrated in your final response.

Reload

Also, whenever the feedback is bad, you can use the  button (see below) to reload and get new feedback.

You can reload multiple times till you see feedback that is helpful.

Report

If you see feedback that is inappropriate or toxic, you can report it using the  Flag button.

We will now start the study!

Start (4/4)
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Figure S29. An example workflow for Human Only (control) participants [phase III: write supportive, empathic
responses]. (a) Participant is asked to write a supportive, empathic response. (b) Participant starts writing the
response.

(a) (b)
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Figure S30. An example workflow for Human + AI (treatment) participants [phase III: write supportive, empathic
responses]. (a) Participant is asked to write a supportive, empathic response and given an option to receive feedback.
(b) Participant starts writing the response. (c) Participant clicks on the prompt to request feedback from HAILEY.
(d) Participant accepts the suggested changes and gets an option to request more feedback. (e) Participant continues
editing the response and requests more feedback as needed. (f) When the response is already highly empathic, the
participant simply receives a positive feedback.

(a) (b) (c)

(d) (e) (f)
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Figure S31. Interface for flagging feedback [phase III: write supportive, empathic responses].
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Figure S32. Exit survey used for collecting perceptions of control group participants [phase IV: post-intervention
survey].

End-of-study Survey

1) It was challenging or stressful to write responses

to posts.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

2) Feedback and Suggestions on how to improve my

responses would have helped me write better

responses.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

3) Describe the challenges faced while writing

responses?

Submit
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Figure S33. Exit survey used for collecting perceptions of treatment group participants [phase IV:
post-intervention survey]. Continued on the next page (1/2).

End-of-study Survey

1) It was challenging or stressful to write responses

to posts.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

2) The feedback shown to me was helpful in

improving my responses.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

3) The feedback shown to me was helpful in making

my responses more empathic.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

4) The feedback shown to me was easy to

incorporate into the final response.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

5) I feel more confident at writing supportive

responses after this study.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

6) I would like to see this type of feedback system

deployed on TalkLife or other similar platforms.

Strongly Agree

Somewhat Agree

Neutral

Somewhat Disagree

Strongly Disagree

7) Describe the challenges faced while writing

responses?

8) D ib i h f db k h l f l?
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Figure S34. Exit survey used for collecting perceptions of treatment group participants [phase IV:
post-intervention survey] (2/2).

8) Describe instances where feedback was helpful?

Why?

9) Describe instances where feedback was not

helpful? How could they have been more helpful?

Submit
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Figure S35. Consent form used for human evaluation of responses.

Disclaimer

Thank you for your interest in our study!

We are researchers at the University of Washington, studying peer-to-peer support platforms.

This study is not being conducted by TalkLife. TalkLife is not responsible for any risks/benefits associated with this study.

As part of this study, we will be collecting ratings to online mental health support interactions. The data from this study will
be uploaded to a secure platform accessible only to the research team. All collected data will be exclusively used for
research purposes. Also, data will only be analyzed in aggregate.

This study has been determined to be exempt from IRB approval under University of Washington IRB ID STUDY00012706. For
concerns or questions, please contact ashshar@cs.washington.edu.

Your participation in this study is completely voluntary. You are free to release/quit the study at any time. Refusing to be in the
experiment or stopping participation will involve no penalty or loss of benefits to which you are otherwise entitled.

Poor-quality data (e.g., same answers to all posts) may be removed without compensation.

If you are a US citizen or a permanent US resident, you will receive an Amazon gift card worth 5 USD after completing this
study.

Note: Top-2 participants (based on inter-rater agreement) will receive an additional gift card worth 25 USD.

Consent

 I agree to participate in this study. I also understand that only US citizens or permanent US residents can be compensated.

Yes, I'm a US citizen or a permanent US resident.

No, I'm neither a US citizen nor a permanent US resident.

Prefer not to say.

Accept and Continue
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Figure S36. Instructions for human evaluation of responses.

Instructions
Read and evaluate online mental health support interactions.

Content Warning
The study contains posts including but not limited to self-harm and suicidal ideation, which may be disturbing to you. If

you have concerns or questions, please send us an email (ashshar@cs.washington.edu). If you have strong negative

reactions to some of the content, please reach out at crisis text line.

What will you read?

You will be shown three posts to read - a seeker post and two response posts. Details below:

Seeker Post: This would be typically a mental health support seeking post, posted online by a user in distress. The
writer of this post is called Seeker.

Response Post A: This is a response/reply posted in response to the seeker post, usually in an attempt to provide
mental health support to the seeker.

Response Post B: This is another response/reply posted in response to the same seeker post, usually in an attempt
to provide mental health support to the seeker.

What will you do?

Your task will be to evaluate the two response posts A and B. In particular, for each set of posts, you will answer the

following questions:

Which response is more empathic (regardless of appropriateness)?

Response A

Both are similar

Response B

Which response is more appropriate/relevant to the seeker post (regardless of empathy)?

Response A

Both are similar

Response B

Response A is...

Written by a human

Generated by a computer

Combination of both

Response B is...

Written by a human

Generated by a computer

Combination of both

You will read 30 such posts and answer the associated questions. We discourage the use of the "Both are similar"

option. Only use it when the posts are actually similar and there is nothing to distinguish the two.

Next
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Figure S37. Interface for human evaluation of responses.

Seeker Post

{{seeker_post}}

Response Post A

{{response_post_A}}

Response Post B

{{response_post_B}}

Which response is more empathic (regardless of appropriateness)?

Response A Both are similar Response B

Which response is more appropriate/relevant to the seeker post (regardless of empathy)?

Response A Both are similar Response B

Response A is...

Written by a human Generated by a computer Combination of both

Response B is...

Written by a human Generated by a computer Combination of both

Next (1/30)
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Figure S38. An overview of PARTNER, the deep reinforcement learning model that HAILEY uses. Figure adapted
from Sharma et al.47
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